
 

 

Objective assessment of bimanual laparoscopic surgical skills via 

functional near infrared spectroscopy (fNIRS) 

by 

Arun Nemani 

A Thesis Submitted to the Graduate 

Faculty of Rensselaer Polytechnic Institute 

in Partial Fulfillment of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Major Subject: Biomedical Engineering 

 

Approved by the  

Examining Committee: 

 

_________________________________________ 

Suvranu De, Thesis Co-Adviser 

 

_________________________________________ 

Xavier Intes, Thesis Co-Adviser 

 

_________________________________________ 

Ge Wang, Member 

 

_________________________________________ 

David Boas, Member 

 

_________________________________________ 

Ganesh Sankaranarayanan, Member 

 

Rensselaer Polytechnic Institute 

Troy, New York 

December, 2017 

(For Graduation December 2017) 

  



 

 ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright 2017 

by 

Arun Nemani 

All Rights Reserved 

 



 

 iii 

CONTENTS 

LIST OF TABLES ............................................................................................................ vi 

LIST OF FIGURES ......................................................................................................... vii 

ACKNOWLEDGMENT ................................................................................................. xv 

ABSTRACT .................................................................................................................. xvii 

1. Introduction .................................................................................................................. 1 

1.1 Methods of surgical technical skill assessment .................................................. 1 

1.1.1 Direct observation methods: Global rating scales and checklist 

based assessment .................................................................................... 2 

1.1.2 Bimanual dexterity based assessment .................................................... 5 

1.1.3 Physical simulation assessment ............................................................. 6 

1.1.4 Virtual reality (VR) simulation assessment ........................................... 8 

1.1.5 Robot assisted surgical skill assessment ................................................ 9 

1.1.6 Alternative surgical skill assessment ..................................................... 9 

1.1.7 Limitations of current assessment methods ......................................... 10 

1.2 Non-invasive brain imaging methods for motor skill assessment ................... 12 

1.2.1 Electroencephalography (EEG) ........................................................... 12 

1.2.2 Magnetoencephalography (MEG) ........................................................ 13 

1.2.3 Functional magnetic resonance imaging (fMRI) ................................. 13 

1.2.4 Positron emission tomography (PET) .................................................. 14 

1.2.5 Limitation of non-invasive brain imaging methods ............................. 14 

1.3 Functional near-infrared spectroscopy (fNIRS) ............................................... 16 

1.3.1 fNIRS modeling ................................................................................... 16 

1.3.2 fNIRS hardware ................................................................................... 18 

1.3.3 fNIRS in bimanual surgical motor skills .............................................. 20 

1.4 Neurophysiology of human motor skill learning and retention ....................... 21 

1.4.1 Motor control physiology ..................................................................... 21 

1.4.2 Motor skill learning .............................................................................. 25 

1.4.3 Motor skill retention ............................................................................. 29 

1.4.4 Gaps in bimanual motor skill neurophysiology knowledge ................. 30 

1.5 Specific aims .................................................................................................... 31 



 

 iv 

1.6 Research plan and thesis outline ...................................................................... 32 

2. Assessing bimanual motor skills with optical neuroimaging .................................... 33 

2.1 Overview .......................................................................................................... 33 

2.2 Methods ............................................................................................................ 35 

2.2.1 Hardware and equipment ..................................................................... 35 

2.2.2 Participants and experimental design ................................................... 36 

2.2.3 NIRS post processing ........................................................................... 39 

2.2.4 Task performance metrics, statistical, and classification methods ...... 39 

2.3 Results .............................................................................................................. 40 

2.3.1 Surgical training task performance assessment.................................... 40 

2.3.2 Optical neuroimaging assessment of established surgical skill 

levels .................................................................................................... 43 

2.3.3 Optical neuroimaging assessment of surgical skill level during 

training ................................................................................................. 48 

2.3.4 Classification of subjects with varying surgical expertise levels ......... 52 

2.4 Discussion ........................................................................................................ 54 

2.5 Summary .......................................................................................................... 61 

3. Objective assessment of surgical skill transfer using non-invasive brain imaging

 ................................................................................................................................... 62 

3.1 Overview .......................................................................................................... 62 

3.2 Methods ............................................................................................................ 64 

3.2.1 Subject recruitment .............................................................................. 64 

3.2.2 Simulation hardware ............................................................................ 64 

3.2.3 Study design, fNIRS processing, and statistical methods .................... 65 

3.2.4 Learning curve and task retention study design ................................... 65 

3.2.5 Transfer task study design .................................................................... 66 

3.2.6 Task performance metrics .................................................................... 67 

3.3 Results .............................................................................................................. 67 

3.3.1 FLS and VBLaST simulator performance learning curves .................. 67 

3.3.2 Differentiation and classification of motor skill transfer based on 

traditional task performance ................................................................. 70 



 

 v 

3.3.3 Neuroimaging-based metrics for differentiation and classification 

of motor skill transfer ........................................................................... 72 

3.4 Discussion ........................................................................................................ 75 

3.5 Summary .......................................................................................................... 78 

4. Brain connectivity analysis for surgical skill assessment in physical and virtual 

surgical simulators ..................................................................................................... 79 

4.1 Overview .......................................................................................................... 79 

4.2 Methods ............................................................................................................ 80 

4.2.1 Subject recruitment .............................................................................. 80 

4.2.2 Hardware, study design, and fNIRS processing................................... 81 

4.2.3 Wavelet coherence and wavelet phase coherence ................................ 81 

4.3 Results .............................................................................................................. 85 

4.3.1 Wavelet coherence between surgical experts and novices ................... 85 

4.3.2 Wavelet coherence between surgically trained and untrained 

subjects ................................................................................................. 86 

4.4 Discussion ........................................................................................................ 88 

4.5 Summary .......................................................................................................... 89 

5. Summary and future work ......................................................................................... 90 

5.1 Thesis summary ............................................................................................... 90 

5.2 Future work ...................................................................................................... 91 

5.2.1 Expansion of cortical coverage ............................................................ 91 

5.2.2 High density probe measurements ....................................................... 92 

5.2.3 Prediction of motor skill levels ............................................................ 92 

5.2.4 Brain imaging for non-technical surgical skills ................................... 93 

REFERENCES ................................................................................................................ 94 

 



 

 vi 

LIST OF TABLES 

Table 1.1: Summary of surgical technical skill assessment methods and major 

limitations. ............................................................................................... 11 

 

Table 1.2: Advantages and disadvantages of currently used functional brain 

imaging modalities [60], [61]. ................................................................. 15 

 

Table 1.3:  Summary of fNIRS studies to assess surgical motor skill. ...................... 20 

 

Table 2.1:  Subject demographics and descriptive data. ............................................ 37 

 

Table 2.2:  Expert vs Novice classification results for fNIRS (with and without 

short separation regression) and FLS metrics. ......................................... 56 

 

Table 4.1:  Study subject demographics and training procedures completed. ........... 81 

 

Table 4.2:  Frequency bandwidth intervals with their associated physiology 

[156], [182]–[184], [195]. ........................................................................ 84 

 



 

 vii 

LIST OF FIGURES 

Figure 1.1:  Sample OSATS form for trainees performing laparoscopic suturing 

and intracorporeal knot-tying tasks [8]. ..................................................... 3 

 

Figure 1.2:  Sample GRITS rating form to assess trainee laparoscopic technical 

skills [3]. .................................................................................................... 5 

 

Figure 1.3:  FLS training and assessment tasks that are required for board 

certification in general surgery. (a) The FLS box trainer trains and 

assesses laparoscopic training tasks such as (b) peg transfer, (c) 

pattern cutting, (d) ligation loop, (e) extracorporeal knot tying, and 

(f) intracorporeal knot trying [31]. ............................................................. 7 

 

Figure 1.4:  Schematic outlining the temporal and spatial resolution estimates for 

common non-invasive brain imaging methods [64]. ............................... 15 

 

Figure 1.5:  Molar coefficients of HbO2 and HbR within the optical window 

(redrawn from [67]). ................................................................................ 17 

 

Figure 1.6:  Different modalities of fNIRS imaging system that include (a) 

continuous-wave, (b) frequency domain, and (c) time domain 

systems [70]. ............................................................................................ 19 

 

Figure 1.7:  Somatotopic representation of body parts from medial to lateral 

direction in the precentral gyrus[84]. ....................................................... 22 

 

Figure 1.8:  Corticospinal tract diagram illustrating specific pathway of motor 

neurons from the cerebrum to muscle motor units [83]. ......................... 24 

 

Figure 1.9:  Schematic illustrating the motor skill learning pathway involving 

spatial and motor sequences [82]. ............................................................ 27 

 

Figure 1.10:  Schematic illustrating neural substrates and their activations during 

slow motor learning [113]. ...................................................................... 29 

 

Figure 2.1:  Infrared probe geometry positioning. Schematic of probe placement 

projected on cortical locations specific to the PFC, M1, and SMA. 

Optodes are placed for maximum coverage over the PFC, M1, and 

SMA. Red dots indicate infrared sources, blue dots indicate long 

separation detectors, and textured blue dots indicate short separation 

detectors. The PFC has three sources (1-3), the M1 has four sources 

(4-7), and the SMA has one source (8). Each of the sources are 

connected to their corresponding long and short separation detectors 

[142]. ........................................................................................................ 36 

 



 

 viii 

Figure 2.2:  Subjects performing FLS pattern cutting task with fNIRS 

measurements. (a) An example medical subject, part of the FLS 

training group, and an example novice surgeon (b) performing a 

FLS pattern cutting task on the official FLS box trainer while 

undergoing fNIRS measurements in real time. ........................................ 38 

 

Figure 2.3:  Schematic outlining cohort and study design. FLS training group 

(gray) and VBLaST training group (purple) underwent training 

regiments whereas the untrained control group (orange), surgical 

novices (green) and surgical experts (red) underwent no training. m 

is the number of trials per each session block and m is the number 

of pattern cutting trials per each session block. ....................................... 38 

 

Figure 2.4:  Schematic depicting the FLS box simulator where trainees perform 

the bimanual dexterity task. A continuous wave spectrometer is used 

to measure functional brain activation via raw fNIRS signals in real-

time. ......................................................................................................... 41 

 

Figure 2.5:  FLS performance scores for Novice surgeons (green) and Expert 

surgeons (maroon) where Expert surgeons significantly 

outperformed Novice surgeons. Two sample t-tests were used for 

statistical differentiation (n.s. not significant, *p<0.05). ............................ 41 

 

Figure 2.6:  FLS performance scores for all training subjects (black) with respect 

to days trained compared to untrained Control subjects (orange) (n.s. 

not significant, *p<0.05). ......................................................................... 42 

 

Figure 2.7:  CUSUM scores for each subject with respect to trials. The H0 

threshold indicates that the probability of any given subject is 

mislabeled as a “Skilled trainee” is less than 0.05, and is 

subsequently labeled as a “Skilled trainee” subject. Results indicate 

that three subjects, FLS-2, FLS-3, and FLS-5 are labeled as “Skilled 

trainees”. The remaining subjects that do not cross the H0 line are 

labeled “Unskilled trainees”. ................................................................... 43 

 

Figure 2.8:  Group average hemodynamic response functions with respect to 

cortical regions. Group average of all trials during the post-test for 

expert surgeons (maroon) and novice surgeons (green). Stimulus 

onset begins at zero seconds (dashed black line) indicating that the 

trial has started. Negative time indicates the baseline measurements 

used for calibration before each trial. ...................................................... 44 

 

Figure 2.9:  Differentiation and classification of motor skill between Novice and 

Expert surgeons. (a) Brain region labels are shown for prefrontal 

cortex (PFC), primary motor cortex (M1) and supplementary motor 

area (SMA) regions. Average functional activation for all subjects 



 

 ix 

in the Novice and Expert surgeon groups are shown as spatial maps 

while subjects perform the FLS task. ...................................................... 44 

 

Figure 2.10:  Average changes in hemoglobin concentration during the FLS task 

duration with respect to specific brain regions for Novice (green) 

and Expert (maroon) surgeons. Two sample t-tests were used for 

statistical tests (
n.s. 

not significant, 
*
p<0.05). ........................................... 45 

 

Figure 2.11:  LDA classification results between Experts and Novices for FLS 

scores and all combinations of fNIRS metrics. ....................................... 46 

 

Figure 2.12:  Leave-one-out cross-validation results show the ratio of samples 

that are below misclassification error rates of 0.05 for FLS scores 

and all other combinations of fNIRS metrics. ......................................... 47 

 

Figure 2.13:  Probability density functions (PDFs) for projected LDA 

classification models. PDFs derived from kernel density estimation 

of normalized FLS performance for Novices, Experts, Skilled 

trainees, Unskilled trainees, and Control during the post-test. fNIRS 

metrics used for classification are functional activation in the PFC, 

LMM1, and SMA. The type I error is defined as 0.05 for all cases. 

(a) Using only FLS task performance as the only metric, results 

show that the probability for a Novice surgeon being misclassified 

as an Expert surgeon is 53% (MCE2) and the probability that a 

Novice surgeon is misclassified as an Expert surgeon is 61% 

(MCE1). (b) fNIRS based classification results show that the 

probability for a Novice surgeon being misclassified as an Expert 

surgeon is 4.4% (MCE2) and the probability that a Novice surgeon 

is misclassified as an Expert surgeon is 4.3% (MCE1). Similarly, 

Control subjects are classified against Unskilled and Skilled 

subjects. ................................................................................................... 48 

 

Figure 2.14:  Differentiation and classification of motor skill between Control, 

Skilled, and Unskilled trainees. (a) Spatial maps of average 

functional activation for all subjects in each respective group during 

the FLS training task on the post-test day. .............................................. 49 

 

Figure 2.15:  Average changes in hemoglobin concentration during stimulus 

duration with respect to specific brain regions for untrained Control 

subjects (orange) and all FLS training students (black). Two sample 

t-tests were used for statistical differentiation (n.s. not significant, 
*p<0.05). Type I error is defined as 0.05 for all cases. ............................ 50 

 

Figure 2.16:  Inter and intra-group misclassification errors for each subject 

population (Control, Skilled and Unskilled trainees) with respect to 

training days. MCE12 and MCE21 values significantly decrease 



 

 x 

below 5% when classifying pre-test Skilled and Unskilled trainees 

on the final training day. Furthermore, misclassification errors are 

also low when classifying Skilled and Unskilled trainees on the final 

training day, along with Skilled trainees and untrained Control 

subjects. ................................................................................................... 51 

 

Figure 2.17:  Misclassification errors are reported for each combination of 

training groups (Control, Skilled, and Unskilled trainees) with 

respect to pre-test, post-test, and final training days. MCEs are 

substantially low when classifying Skilled trainees and Control 

subjects along with inter-Skilled trainee group classification. 

Unskilled trainees, however, showed high misclassification errors 

even when compared to Unskilled trainees and Control subjects 

during the post-test. As a measure of skill retention, classification 

models were also applied for all subject groups from the final 

training day to the post-test. ..................................................................... 52 

 

Figure 2.18:  (a) The probability that an untrained Control subject is misclassified 

as an Unskilled trainee is 46% (MCE1) and the probability that an 

Unskilled trainee is misclassified as a Control is 50% (MCE2). (b) 

Conversely, the probability that a Control is misclassified as a 

Skilled trainee is 16% (MCE1). Whereas the probability that a 

Skilled trainee is misclassified as a Control is 9.5% (MCE2). ................. 52 

 

Figure 2.19:  Cross-validation results for classification across all subjects with 

varying degree of motor skills. Each box represents one trial per 

expertise group during the post-test, where the shaded regions 

indicate the MCE if that given trial is removed from the 

classification model. Cross-validation results with their respective 

ratio of samples that are below misclassification error rates of 5% 

for Expert surgeons vs Skilled trainees (28/35 samples), Expert 

surgeons vs Unskilled trainees (29/ 38), Expert vs Novice surgeons 

(43/43), Expert surgeons vs untrained Control subjects (34/38), 

Skilled trainees vs Unskilled trainees (15/21), Skilled trainees vs 

Novice surgeons (24/26), Skilled trainees vs untrained Control 

subjects (18/21), Unskilled trainees vs Novice surgeons (16/29 

samples), Unskilled trainees vs untrained Control subjects (11/24), 

and finally Novice surgeons vs untrained Control subjects (9/29). ......... 53 

 

Figure 2.20:  Cross-sectional diagram of infrared light propagation through 

cortical tissue. The short separation detectors are placed 8mm away 

from each source to ensure the backscattered light is solely due to 

superficial tissue, such as scalp, skull, dura, arachnoid, and pia 

matter. The large separation detectors are placed 3-4cm away from 

each source to ensure sufficient light penetration depth into the 

cortex is achieved. ................................................................................... 54 



 

 xi 

 

Figure 2.21:  Differentiation and classification of motor skill between Novice and 

Expert surgeons without short separation regression. (a) Average 

changes in hemoglobin concentration during the FLS task duration 

with respect to specific brain regions for Novice (green) and Expert 

(maroon) surgeons. Two sample t-tests were used for statistical tests 

(
n.s. 

not significant, 
*
p<0.05). .................................................................... 55 

 

Figure 2.22:  LDA classification results for FLS scores and all combinations of 

fNIRS metrics using fNIRS metrics with superficial tissue signals 

included. ................................................................................................... 56 

 

Figure 2.23:  Leave-one-out cross-validation results show the ratio of samples 

that are below misclassification error rates of 0.05 for FLS scores 

and all other combinations of fNIRS metrics when measurements 

include superficial tissue signals. ............................................................ 56 

 

Figure 2.24:  Quadratic support vector machine (SVM) classification of Expert 

and Novice surgeons. (a) Unsupervised, quadratic polynomial 

support vector machines were used for bivariate classification of 

Expert and Novice surgeons. Quadratic support vectors outlining the 

decision boundaries are shown. (b) Receiving operating 

characteristic (ROC) curve showing the sensitivity vs specificity of 

SVM based classification. (c) Weights from the corresponding LDA 

classification of Expert vs Novice surgeons were used to combine 

the cortical activations as a single metric. (d) The corresponding 

ROC curves for the weighted fNIRS metric based classification vs 

traditional FLS scores. (e-f) Confusion matrices showing the 

specific results of true positive and true negative classes (green) 

along with the false positive and false negative classes (maroon). 

Results indicate that SVM based on weighted fNIRS classification 

show no cases of false negatives. ............................................................ 58 

 

Figure 2.25:  Quadratic support vector machine (SVM) classification of Skilled 

vs Unskilled trainees. (a) Unsupervised, quadratic polynomial 

support vector machines were used for bivariate classification of 

Skilled and Unskilled trainees. Quadratic support vectors outlining 

the decision boundaries are shown. (b) Receiving operating 

characteristic (ROC) curve showing the sensitivity vs specificity of 

SVM based classification. (c) Weights from the corresponding LDA 

classification of Skilled vs Unskilled trainees were used to combine 

the cortical activations as a single metric. (d) The corresponding 

ROC curves for the weighted fNIRS metric based classification vs 

traditional FLS scores. (e-f) Confusion matrices showing the 

specific results of true positive and true negative classes (green) 

along with the false positive and false negative classes (red). ................ 59 



 

 xii 

 

Figure 3.1:  FLS and VBLaST simulators. The physical FLS pattern cutting (PC) 

box trainer (left) and the VBLaST PC simulator (right) used in this 

study [142]. .............................................................................................. 65 

 

Figure 3.2:  Schematic illustrating the learning curve study design. Two training 

groups, VBLaST (blue) and FLS (magenta), undergo a training 

period whereas the control group (green) only perform the baseline 

test (Day 1), retention, and transfer task tests. ......................................... 66 

 

Figure 3.3:  Pattern cutting transfer task ex-vivo sample. (a) Ex-vivo peritoneum 

sample prior to transfer task completion for FLS trained subject 3. 

(b) Completed pattern cutting transfer task for FLS trained subject 

3 with the pattern cutting task replicated and the marked peritoneal 

tissue resected [142]. ............................................................................... 67 

 

Figure 3.4:  FLS pattern cutting performance are shown with respect to training 

day. FLS training students (magenta) are compared to untrained 

control students (green). FLS pattern cutting task retention scores 

are shown for trained FLS students (magenta), untrained control 

subjects (green), and VBLaST trained subjects (blue). Mann-

Whitney U tests were used to statistically differentiate the control 

and FLS training groups (n.s. not significant, *p<0.05). ............................ 68 

 

Figure 3.5:  VBLaST pattern cutting performance are shown with respect to 

training day. VBLaST training students (blue) are compared to 

untrained control students (green). VBLaST pattern cutting task 

retention scores are shown for trained VBLaST students (blue), 

untrained control subjects (green), and FLS trained subjects 

(magenta). Mann-Whitney U tests were used to statistically 

differentiate the control and FLS training groups (n.s. not significant, 
*p<0.05). .................................................................................................. 69 

 

Figure 3.6:  CUSUM scores for trained FLS and VBLaST groups. CUSUM 

scores for each subject with respect to numbe of trials. The threshold 

score to be considered a senior in the pattern cutting task is 63[16]. 

(a) CUSUM scores indicate that three subjects (FLS2, FLS3, FLS5) 

achieved the level of senior during the FLS training period. (b) 

CUSUM scores indicate that four subjects (VBLaST1, VBLaST4 – 

6) achieved the level of senior during the VBLaST training period. ....... 70 

 

Figure 3.7:  Transfer task completion times for the trained FLS, untrained 

control, and trained VBLaST subjects (*p<0.05)..................................... 71 

 



 

 xiii 

Figure 3.8:  (a) LDA classification of trained FLS and control subjects during 

the transfer task based on completion times and (b) corresponding 

crossvalidation results. ............................................................................. 71 

 

Figure 3.9:  (a) LDA classification of trained VBLaST and control subjects 

during the transfer task based on completion times and (b) 

corresponding crossvalidation results. ..................................................... 72 

 

Figure 3.10:  Changs in cortical activation during the transfer task with respect to 

cortical regions. Average changes in hemoglobin (ΔHbO2) 

concentration as a measure of functional activation with respect to 

different cortical regions for FLS trained subjects (magenta), 

untrained control subjects (cyan), and VBLaST trained subjects 

(black) while all subjects perform the ex-vivo transfer task. ................... 73 

 

Figure 3.11:  The cumulative set of MCE1 and MCE2 for all combinations of 

fNIRS metrics and the transfer task completion time to classify FLS 

trained and control subjects. .................................................................... 74 

 

Figure 3.12:  The cumulative set of MCE1 and MCE2 for all combinations of 

fNIRS and transfer task metrics to classify VBLaST trained and 

control subjects. ....................................................................................... 74 

 

Figure 3.13:  Leave-one-out crossvalidation results indicate the misclassification 

errors for each sample treated as an independent sample for the LDA 

model using all combinations of fNIRs and transfer task metrics, 

where the percent of samples that have MCE below 0.05 for each 

possible metric combincation are shown. ................................................ 75 

 

Figure 4.1:  Example wavelet coherence between two different fNIRS time 

series data. (a) Two time series data from the left lateral PFC (LPFC) 

and left medial M1 (LMM1) channels for a surgical expert during 

one FLS task trial (b) Wavelet coherence magnitude between the 

two time series data based on time and frequency domains. Wavelet 

coherence magnitude values are shown via the color bar. Only 

values within the cone of influence range, indicated by a dashed 

white line, are included for wavelet coherence power magnitude and 

phase coherence calcualtions. (c) Time-averaged wavelet coherence 

magnitudes and (d) wavelet phase coherence magnitudes between 

the two example time series shown in (a). ............................................... 84 

 

Figure 4.2:  Wavelet coherence and wavelet phase coherence magnitude 

changes between experts and novices on physical or virtual 

simulators. (a-b) Wavelet coherence magnitudes and wavelet phase 

coherence magnitudes for FLS experts (red) vs novices (green) 

within the neurovascular coupling activity frequency range. (c-d) 



 

 xiv 

Wavelet coherence magnitudes and wavelet phase coherence 

magnitudes for VBLaST experts (purple) vs novices (blue) within 

the neurovascular coupling activity frequency range. ............................. 86 

 

Figure 4.3:  Longitudinal wavelet phase coherence in neurogenic activity 

frequency range with increasing surgical skill training. WPCO 

magnitudes within the neurovascular coupling activity frequency 

range (V) for between the CPFC and SMA channels for untrained 

control subjects, trained FLS (a) and trained VBLaST (b) subjects 

as training and motor skill proficiency increases with training days. ...... 87 

 

Figure 4.4:  Functional connectivity schematics for training and untrained 

subjects post training on virtual or physical simulators. Schematic 

showing the functional connectivity differences, as shown by 

significant changes in WPCO in the neurogenic activity frequency 

ranges, between trained and untrained subjects. ...................................... 87 

 



 

 xv 

ACKNOWLEDGMENT 

With my graduate experience nearly ending, I am filled with nostalgic memories of 

the past 7 years at RPI. Many of these experiences have made a lifelong impact on my 

beliefs, relationships, and character. I would like to thank all my colleagues, friends, and 

family that have supported me through this journey. I would not have been able to achieve 

this dream without all of you. 

First and foremost, I would like to acknowledge my co-advisors Drs. Suvranu De and 

Xavier Intes for their tremendous support and trust. Both have been excellent mentors 

throughout my PhD career and constantly pushing me towards a standard of scientific 

rigor and excellence that I will take with me going forward. Suvranu is someone who has 

incredible vision and has provided tremendous guidance on my research. We would have 

conversations where he encouraged me to think bigger and broader, and to make a 

meaning contribution with my work. Many of these conversations happened during our 

Boston road trips, where we would discuss research, political satire, science, and current 

events. In fact, my PhD topic spawned from one of these trips on one fateful late-night 

ride home from an NIH meeting in Boston.  

I also thank Dr. Intes for his immense patience, guidance, and advice. Xavier was 

someone that I would turn to for technical discussions, career advice, and pretty much 

everything else. I admire his leadership and management skills and I truly learned a 

tremendous amount from simply observing him. He would often walk into the office and 

say “Papers? Papers?!?” and immediately walk out. This kind of humor, his drive, his 

passion for science, would motivate us daily to keep working hard. Both Suvranu and 

Xavier have been mentors that have literally shaped my drive, work ethic, and passion for 

research, and for this I am extremely grateful. I would like to thank my committee 

members Drs. Ge Wang, David Boas, and Ganesh Sanakaranarayanan. Their inputs 

throughout my thesis project have been very valuable and I am very grateful for them to 

take time out of their days and attend my meetings. 

I would like to thank, the VPR office, the BME department, and RPI for providing 

the academic, financial, and administrative support that allowed me to pursue my 

doctorate. Funding grants such as the NIH / NIBIB 1R01EB014305, NHBLI 

1R01HL119248, and NCI 1R01CA197491 allowed us researchers to pursue advances in 



 

 xvi 

science, and I am very grateful for such programs. I would like to specifically thank Dr. 

Uwe Kruger. His efforts and guidance in extracting the most out of my dataset truly added 

a new dimension to this work (pun intended). I am extremely grateful for his input and 

wisdom regarding my work. Lastly, I would also like to thank Dr. Deanna Thompson for 

believing in me when I needed it most during my transition to the PhD program. 

 I would like to thank all my colleagues during my time at RPI. First, I would like to 

thank our clinical collaborators Drs. Steven Schwaitzberg, Clairice Cooper, and Denise 

Gee. Each of them provided so much support to help me complete my studies and am very 

grateful for their guidance and help. I would also like to thank Dr. Boas and the Martinos 

Imaging center team for their immense support for helping me complete my studies. Dr. 

Meryem Yucel, for example, spent many hours training and educating me with infrared 

systems to make sure I would succeed when I started my studies. She was also 

instrumental in helping me with data processing and I am very grateful she is a true 

colleague in every sense of the word. 

I would also like to thank my lab mates and friends during my time at RPI. I have 

bonded with so many people and created so many memories that there are simply too 

many to name. From intellectual discussions in both CeMSIM and Intes lab offices to 

NYC road trips, I am grateful to all my friends at RPI that made my graduate experience 

so fun. Many of these lab mates and friends I consider family, and will cherish for life. 

My parents and my brother, often hundreds of miles away, always felt so close during 

my time at RPI. They would always support me during the tough times and am extremely 

grateful for their unwavering love and support. Finally, I would like to thank my wife, 

Akhila. We met when I was a third year PhD student and she has been by my side in every 

aspect during my graduate school career. Her support and unconditional love provided me 

with inspiration and reassurance when I needed it most. I am grateful and honored to 

consider her as a life partner and someone I can rely on for everything life has to offer.  



 

 xvii 

ABSTRACT 

Surgical simulators are effective methods for training and assessing surgical technical 

skills, particularly those that are bimanual. These simulators are now ubiquitous in surgical 

training and assessment programs for residents. Simulators are used in programs such as 

the Fundamentals of Laparoscopic Surgery (FLS) and Fundamentals of Endoscopic 

Surgery (FES), which are pre-requisites for Board certification in general surgery. 

Although these surgical simulators have been validated for clinical use, they have 

significant limitations, such as subjectivity in assessment metrics, poor correlation of 

transfer from simulation to clinically relevant environments, poor correlation of task 

performance scores to learning motor skill levels, and ultimately inconsistent reliability of 

these assessment methods as an indicator of positive patient outcomes. These limitations 

present an opportunity for more objective and analytical approaches to assess surgical 

motor skills. To address these surgical skill assessment limitations, we present functional 

near-infrared spectroscopic (fNIRS), a non-invasive brain imaging method, to objectively 

differentiate and classify subjects with varying degrees of laparoscopic surgical motor 

skill levels based on measurements of functional activation changes. 

In this work, we show that fNIRS based metrics can objectively differentiate and 

classify surgical motor skill levels with significantly more accuracy than established 

metrics. Using classification approaches such as multivariate linear discriminant analysis, 

we show evidence that fNIRS metrics reduce the misclassification error, defined as the 

probability that a trained subject is misclassified as an untrained subject and vice versa, 

from 53 – 61% to 4.2 – 4.4% compared to conventional metrics for surgical skill 

assessment. This evidence also translates to surgical skill transfer metrics, where such 

metrics assess surgical motor skill transfer from simulation to clinically relevant 

environments. Results indicate that fNIRS based metrics can successfully differentiate and 

classify surgical motor skill transfer levels by reducing the misclassification errors from 

20 – 41 % to 2.2 – 9.1%, when compared to conventional surgical skill transfer assessment 

metrics. Furthermore, this work also shows evidence of high functional connectivity 

between the prefrontal cortex and primary motor cortex regions correlated to increases in 

surgical motor skill levels, addressing the gap in current literature in underlying 

neurophysiological responses to surgical motor skill learning.  
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This work is the first to show conclusive evidence that fNIRS based metrics can 

significantly improve subject classification for surgical motor skill assessment compared 

to metrics currently used in Board certification in general surgery. Our approach brings 

robustness, objectivity, and accuracy in not only assessing surgical motor skill levels but 

also validating the effectiveness of future surgical trainers in assessing and translating 

surgical motor skills to more clinically relevant environments. This non-invasive imaging 

approach for objective quantification for complex bimanual surgical motor skills will 

bring about a paradigm change in surgical certification and assessment, that may lead to 

significantly reduced negative patient outcomes. Ultimately, this approach can be 

generally applied for bimanual motor skill assessment and can be applied for other fields, 

such as brain computer interfaces (BCI), robotics, stroke and rehabilitation therapy.   
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1. Introduction 

During the 1890s, William Halsted proposed the “see one, do one, teach one” 

approach for surgical training and assessment during residency. This approach comprised 

an apprenticeship model for residents to learn and retain surgical technical skills, and is 

largely still utilized in medical training programs today. With more recent advances in 

surgery, such as minimally invasive surgery (MIS) and laparoscopy based procedures, 

surgical technical skill requirements are increasingly more demanding due to the 

complexity of these procedures. While significant strides have been taken to improve 

surgical technical skill training and assessments, these methods are still subjective or 

underdeveloped. Furthermore, very little attention has been given to the underlying 

neurophysiological mechanisms of learning and retaining laparoscopic surgical motor 

skills. The purpose of this thesis is to propose non-invasive brain imaging, namely 

functional near-infrared spectroscopy (fNIRS), as a viable and clinically translatable 

method for accurate bimanual laparoscopic skill assessment. 

This chapter starts with section 1.1, a review of the current assessments methods for 

surgical technical skill, especially for laparoscopic surgical procedures. Section 1.2 is a 

brief overview of the current non-invasive brain imaging methods utilized in research 

today, including their respective advantages and limitations. Section 1.3 is an overview of 

fNIRS theory and modeling, an overview of hardware types, and a literature review of 

fNIRS studies specific to bimanual surgical skill assessment. Section 1.4 provides an 

overview of motor skill learning, execution, and retention theories, specific to bimanual 

tasks. Section 1.5 defines each specific aim required to achieve research goals in this 

thesis. Finally, section 1.6 provides a thesis outline for the remainder chapters.  

1.1 Methods of surgical technical skill assessment 

Surgical skill assessment plays a vital role in surgical skill training and core 

competencies of surgical residents. This section is devoted to reviewing the current 

surgical skill assessment methodologies, that include direction observations methods, 

where an expert physician will directly observe a trainee and assess the core competencies 

of surgical technical skills, bimanual dexterity based analysis, simulation based 

assessment (physical and virtual). These methods, however, have significant limitations 
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that are addressed in this chapter and serve as the motivation for developing objective 

metrics based on functional connectivity, which is the focus of our work.  

1.1.1 Direct observation methods: Global rating scales and checklist based 

assessment 

Traditional surgical assessment methods, such as direct observations by an 

experienced trainer to assess the skills of the trainee, are generally subjective and use 

global rating scales (GRS) to score competency. These observational methods allow 

experienced surgeons to use structured checklists for technical criteria and rate the surgical 

performance of the trainee under direct observation [1]–[4]. 

One such method is the Objective Structure Assessment of Technical Skills (OSATS) 

[4]–[6]. OSATS incorporates six different stations where trainees perform complex 

surgical training tasks on either live animals or benchtop models. Proctors, who are 

generally expert surgeons, will assess performance using two mechanisms. The first is a 

task-specific checklist consisting of maneuvers that have been deemed critical for that 

particular surgical task [5]. The second mechanism is a global rating form, that includes 

non-technical metrics, such as surgical behaviors, respect for tissue, economy of motion, 

and appropriate usage of surgical staff and assistants. Both of these mechanisms are 

generally combined onto a single form where experts use Likert scale based scores to 

assess each trainee according to each checklist component [7]–[9]. An example OSATS 

form is shown in Figure 1.1. 
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Figure 1.1: Sample OSATS form for trainees performing laparoscopic suturing and intracorporeal 

knot-tying tasks [8].  

In the majority of surgical training programs, surgical skills are assessed using reports 

called In-Training Evaluation Reports (ITERs). Like OSATS, these reports utilize 

structure checklist based reports that evaluate surgical trainees on technical and non-

technical surgery skills[10]. Expert physicians rate trainees on categories such as medical 

expertise, communication, collaboration skills, managerial skills, and basic technical 

skills[10]. Furthermore, these summative reports must be updated and periodically 

reassessed to ensure that training residents receive regular feedback through their surgical 

rotations. 
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With the advent of laparoscopic surgery, specialized training and practice is required 

due to the increased difficulties associated with two-dimensional visualization, unnatural 

hand-eye coordination and significantly reduced haptic interactions. However, OSATS 

and ITERs were not specifically designed to assess laparoscopic based procedures. As a 

consequence, Global Operative Assessment of Laparoscopic Skills (GOALS) was 

developed as an intraoperative assessment tool for such procedures [2]. GOALS consists 

of a 5-item global rating scale that specifically assess laparoscopic procedure competency 

and case difficulty using a 10-item checklist with visual analogue scales [2]. GOALS 

addresses the drawbacks of previous assessment methods by specifically designing rating 

scales for laparoscopic procedures  and providing specific and focused feedback based on 

procedure type [2]. 

By utilizing commonalities in GOALS and OSATS based methodologies, another 

evaluation tool, called Global Rating Index for Technical Skills (GRITS), was developed 

to generalized surgical technical skills that focus on general markers of technical skill 

instead of procedure specific ratings. Using categories such as respect for tissue, 

instrument handling / knowledge, flow of operation, depth perception, time and motion, 

and bimanual dexterity, expert physician will rate trainees using a 5-point Likert scales in 

these categories [3]. GRITS expand upon ITERs by specifically focusing on technical 

skills and delivering an averaged Likert score for each training resident. The result is a 

more comprehensive checklist based assessment tool than ITERs or GOALS that is 

specifically tailored trainee assessment regarding minimally invasive procedures. Sample 

checklist based assessment forms are shown in Figure 1.2. 
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Figure 1.2: Sample GRITS rating form to assess trainee laparoscopic technical skills [3]. 

1.1.2 Bimanual dexterity based assessment 

Dexterity analysis allows for more objective skill assessment than direct methods by 

utilizing hand-tracking techniques to discriminate surgical skill. For example, the 

Advanced Dundee Endoscopic Psychomotor Tester (ADEPT) utilized infrared optical 

motor sensor placed on the surgeon’s arm to track extrapolated positional data and 

compare the performance between novices and experts [11], [12]. Due to possible optical 

occlusion for the sensors resulting in omitted positional data, this method is not widely 

accepted in operating rooms. The Imperial College Surgical Assessment Device (ICSAD) 

utilizes electromagnetic markers placed on each hand of the surgeon performing open and 

laparoscopic surgical simulated tasks. ICSAD uses metrics such as total procedure time, 
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total travel path length, and speed of hand movements that have been used in several open 

surgical training tasks [12]. However, the ICSAD has not been clinically translated due to 

the infeasibility of attaching sensors to the surgeon’s hands without impacting 

performance in the operating room [9]. Several approaches to modeling the kinematics of 

the surgical tools have also shown to differentiate motor skill between novices and experts 

as a means for surgical skill evaluation. These models often utilize Markov Models (MM) 

to discretize numerous surgical actions, such as grasping or cutting, into individual states. 

By analyzing tool kinematics for each state, these models have mapped tool behaviors for 

surgical experts and novices during basic surgical tasks with an accuracy of 87.5% [13]–

[15]. However, these models require a significant amount of data set training to ensure an 

acceptable level accuracy and thus cannot be utilized in real time. While these methods 

have been published for use in surgical training environments, dexterity based approaches 

have not been directly implemented for real surgical procedures in the OR. 

1.1.3 Physical simulation assessment 

To provide more objectivity and standardization for laparoscopic skills assessment, 

the McGill Inanimate System for Training and Evaluation of Laparoscopic Skills 

(MISTELS) was developed and validated as an effective simulator to teach and assess 

laparoscopic surgical skills [16]–[20]. The MISTELS system utilizes two 12-mm trocars 

where laparoscopic tools can be inserted into an enclosed box. Subjects can then 

manipulate and use these tools to practice surgical training tasks, such as pattern cutting, 

peg transfer, ligating loop, intra- and extracorporeal knot trying. These tasks are 

specifically designed to train important technical skills required for laparoscopic surgery. 

Beyond task training, the MISTELS system also offer objective scoring of each of the five 

training tasks, that are based on completion time and errors. These task assessment 

methods have been validated as effective in differentiation surgical skill between expert 

and trainee surgeons [16], [18], [20].  

Upon rigorous validation and subsequent publications, a joint committee comprised of the 

Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) and the 

American College of Surgeons (ACS) developed the MISTELS into a program called the 

Fundamentals of Laparoscopic Surgery (FLS). Consequently, the FLS program is now the 
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current standard is assessing proficiency in laparoscopic skills and is required for board 

certification since 2009[21]–[23] . FLS comprises of a didactic component, comprising of 

a web-based, multiple-choice examination, and a skill evaluation module, that includes 

hands-on skills testing for basic laparoscopic skills.  An important component of the FLS 

program relies on a box trainer for training and measurements of technical skills during 

five basic laparoscopic surgical maneuvers. Surgical manual skills are evaluated via 

scoring the five skills tasks during timed trials with a maximum time limit. While the 

actual formulation for FLS scores are IP protected, studies have shown that FLS training 

is effective in teaching technical motor skills that are differentiable from untrained 

subjects and are retained for up to six months post-training [24]–[30].   

Figure 1.3: FLS training and assessment tasks that are required for board certification in general 

surgery. (a) The FLS box trainer trains and assesses laparoscopic training tasks such as (b) peg 

transfer, (c) pattern cutting, (d) ligation loop, (e) extracorporeal knot tying, and (f) intracorporeal 

knot trying [31]. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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1.1.4 Virtual reality (VR) simulation assessment 

To address the general limitations of physical trainers, virtual reality based simulators 

have been developed and shown to provide a safe and effective training and assessment 

platform for laparoscopic surgical skills[24], [27]. As an analog to the MISTELS system, 

the minimally invasive surgical trainer-virtual reality (MIST-VR) system, is one of the 

first validated virtual simulator that trains and assesses laparoscopic skills in silico. By 

using metrics such as economy of motion, tool path length, instrument errors, task 

performance scores, and economy of time, studies have shown that MIST-VR is effective 

in training surgical technical skills specific to laparoscopic procedures [24], [29], [32], 

[33].  

To specifically address the limitations of the FLS training simulator, we have 

developed the Virtual Basic Laparoscopic Skills Trainer (VBLaST) that is capable of 

simulating the five FLS task modules in real time[26], [34]–[37]. The benefits of the 

VBLaST system include automated and robust scoring, introduction of  kinematic metrics 

that are correlated to task performance,  dramatically increased objectivity in task 

performance assessment, and the elimination of high cost for administration or testing 

materials[26], [34]–[37]. As with any virtual reality based simulator, a thorough validation 

is required to demonstrate its effectiveness as a surgical training and performance 

assessment tool.  

Commercial systems such as LapSim or Lap Mentor, are also high-fidelity VR 

systems that are capable of simulating, teaching, and assessing laparoscopic skills in real-

time [38], [39]. These commercial systems train and assess laparoscopic motor skill using 

robust haptic feedback devices with moderate fidelity graphics. Significant research 

efforts have shown that commercial systems reduce operative time and increase trainee 

performance, and they have been shown to demonstrate positive correlation to operating 

room performance [24], [39]–[41]. Unfortunately, these commercial VR systems also 

present several drawbacks that include inaccurate force-feedback, high costs, limited 

realism that translates to the OR, and inconsistent results for skill transfer [38], [39]. 

Furthermore, these commercial systems report task performance scores based on 

simulated procedures, which may not be directly correlated to outcomes in clinical 

environments. 
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1.1.5 Robot assisted surgical skill assessment 

Robot assisted surgery (RAS) allows physicians to perform intricate and complex 

surgical procedure using sophisticated interactable robotic systems. Generally, these 

systems allow for increased precision, control, and flexibility than conventional methods 

in MIS. These trainers have seen an exponential rise in adoption within clinics geared 

towards numerous MIS based procedures. The top five VR simulators for RAS include 

the Surgical Education Platform (SEP), the dV Trainer, da Vinci Skills Simulator, the 

RobotiX, and the Robotic Surgical System [42]. While there is limited evidence that RAS 

trainers show specific increases in motor skill proficiency and conclusive surgical motor 

skill transfer, efforts to create a standardized training and assessment program called the 

Fundamentals of Robotic Surgery are already underway [42].  

Many of these simulators utilize a scoring methodology to assess technical skill 

during training. Scoring metrics include, but not limited to,  economy of motion, time of 

excessive force, instrument collisions, missed targets, economy of motion, mastery of 

workspace range, and task completion time [42]. However, these assessment methods are 

often proprietary and do not offer direct comparisons to outcomes in operative scenarios 

[42]. Beyond the impracticality of these systems due to high costs, many of these RAS 

simulators have inconstancies in validation studies, no direct correlation of RAS training 

with positive operative outcomes and limited conclusive evidence of skill transfer from 

simulators to clinical environments [42]. 

1.1.6 Alternative surgical skill assessment 

Stress physiology is an important component of laparoscopic surgery where 

physicians must manage internal and external stimulus that evoke stress responses. In 

many cases, effective completion of surgical procedures with minimal negative patient 

outcomes while under operating room duress is a hallmark of surgical proficiency [43]. 

Recent reviews have indicated that stress physiology metrics, such as heart rate variability, 

average heart rate, self-reported stress metrics, and skin conductance changes, can 

differentiate surgical expertise between novices and experts [43]. These metrics are often 

used as the basis for crisis management training in teaching programs. While stress 

management is a crucial aspect of surgical training and carries through to proficiency, 
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accurate measurements of stress physiology is problematic. For example, many studies 

that utilize stress physiology metrics such as skin conductance, heart rate, or salivary 

production levels, assume that changes in these metrics are solely due to responses to 

stress stimuli. However, this may not be the case as subject variation and systemic 

physiology can dramatically impact these stress metrics, thus increasing the variability in 

reported data [43]. Furthermore, there is also a severe lack of critical evidence that 

suggests that changes in stress physiology are correlated to established surgical technical 

performance metrics [43].  

Eye tracking has also been proposed for objective measures of surgical skill 

assessment. This methodology relies on the digital cameras or infrared optics to track pupil 

positioning in real time [44]. Beyond tracking the pupil centroids, other metrics such as 

pupil dilation, or fixation frequencies can also be tracked and have been utilized as 

measures of effort or concentration [44]–[46]. Note that eye tracking methodologies, while 

portable and very flexible for use in the operating room, have not shown rigorous 

validation for surgical attention or skill assessment.  

1.1.7 Limitations of current assessment methods 

Several of the discussed tools for surgical technical skill assessment have been 

validated, where many are currently in use in medical institutions. However, each of the 

existing methods have major limitations that need to be addressed to have more objective 

and analytical methods of technical skill assessment that eventually correlate to positive 

outcomes in the OR [7], [47]–[51]. Table 1.1 summaries these methods along with their 

major limitations. 
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Table 1.1: Summary of surgical technical skill assessment methods and major limitations. 

Assessment 

type 

Assessment 

method 

Assessment metrics Major limitations 

Global rating 

scales 

OSATS 5-point Likert scale, 

general checklist based 

on proctor observations 

• Poor interrater reliability [7], [47]–[50] 

• Subjective metrics [7], [47]–[50] 

• High human resource cost [7], [47]–[50] 

• Not designed for laparoscopic 

procedures [2] 

ITERs Subjective reports, 

checklist based 

subsections 

• Distribution errors, recall bias, halo 

effects [2], [10] 

• Subjective metrics [7], [47]–[50] 

• High human resource cost [7], [47]–[50] 

• Not designed for laparoscopic 

procedures [2] 

GOALS Cumulative score based 

on 5-point Likert scale 

checklist 

• Subjective metrics [7], [47]–[50] 

• High human resource cost [7], [47]–[50] 

GRITS 5-point Likert scale 

checklist 

 

• Halo effects [3] 

• Subjective metrics [7], [47]–[50] 

• Poor correlation to patient outcomes [7], 

[52] 

Dexterity 

analysis 

ADEPT Positional data metrics, 

hand velocity, hand 

acceleration 

• Impractical for OR usage due to optical 

occlusion [9] 

• Unimanual tracking only [9] 

ICSAD Hand positional data 

metrics, hand velocity, 

total task time, hand 

total path length 

• Impractical for OR usage due to motion 

artifacts and occluding wires [9] 

Physical 

simulators 

MISTELS Task performance 

scores, completion time, 

task errors 

• High cost for testing administration 

[18], [19], [34], [53] 

• Subjectivity in task assessment [18]–

[20], [34], [53] 

FLS Proprietary task 

performance scores, 

task completion time, 

task errors 

• High cost for testing administration 

[18]–[20], [34], [53] 

• Subjectivity in task assessment [18]–

[20], [34], [53] 

• Inconsistencies in FLS scoring 

methodology [18], [22], [34], [54]–[57] 

• No correlation of patient injury 

reduction due to FLS certification [18], 

[22], [34], [54]–[57] 

Virtual 

simulators 

MIST-VR Economy of time, task 

completion time, task 

performance scores,  

• Low fidelity virtual simulator [24], [27], 

[58] 

• No force sensory feedback [27] 

• Limited evidence of skill transfer to OR 

[9], [20], [24] 

VBLaST Kinematic metrics, 

force metrics, task 

performance scores, 

task completion time, 

task errors  

• Validation required for each new 

laparoscopic procedure 
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1.2 Non-invasive brain imaging methods for motor skill assessment 

Now that current methods for surgical skill assessments have been identified, with 

associated limitations, one promising approach is to utilize brain imaging methods to 

quantify cortical changes as surgical motor skill increase. Several common brain imaging 

approaches are available with their inherent advantages and disadvantages and are 

addressed in this section. Direct methods of measuring functional activity include 

electroencephalography (EEG), and magnetoencephalography (MEG), while indirect 

methods include functional magnetic resonance imaging (fMRI), positron emitting 

tomography (PET), and functional near-infrared spectroscopy (fNIRS).  

1.2.1 Electroencephalography (EEG) 

Perhaps the oldest neuroimaging technique, electroencephalography (EEG) records 

electrical current across cell membranes during a stimulus period. During a stimulus, 

neuronal depolarization with postsynaptic potentials (PSPs) occurs across the cellular 

membranes, which can be detected in an aggregate fashion in real time. EEG electrodes, 

which are generally composed on thin conductive discs, are commonly used in 

conjunction with the International 10-20 system of electrode placement for most 

functional connectivity studies [59]. Most EEG system utilize paired channels of up to 24 

channels, although there are several systems that also utilize high electrode density 

approach that include 256 channels. Most cerebral signals measured via EEG fall within 

specific frequency ranges that are correlated to physiological responses. These frequency 

ranges include Delta, Theta, Alpha, and Beta waves. Delta waves (1-3 Hz) are normally 

apparent during sleep cycles, theta waves (4-7 Hz) are commonly observed in neonatal 

models or children, alpha waves (8-17 Hz) are observed during blinking or metal 

relaxation, and finally beta waves (12-30 Hz) are most notable during alert or anxious 

subjects [60], [61]. One of the prime benefits of EEG is the high temporal resolution during 

measurement acquisition. Signals can be acquired on the order of 100Hz and measure 

quick tasks or stimulus behavior, yet will have poor spatial resolution that can lead to lack 

of specificity in cortical activation.  
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1.2.2 Magnetoencephalography (MEG) 

Magnetoencephalography (MEG) is a direct brain imaging technique that measures 

the magnetic field changes due to increased electrical activity within cortical activity as a 

stimulus is presented [62]. While these magnetics fields are fairly weak, MEG can 

measure functional activation in the cortical sulci and gyri. MEG also is not hindered by 

superficial tissue such as scalp or skull matter since magnetic fields will not significantly 

distort as they propagate through these turbid media. These specific advantages allow for 

finer spatial resolution than EEG, although these increases are marginal. Unfortunately, 

there are several drawbacks that disable MEG as a practical means for non-invasive brain 

imaging. MEG imaging can only be implemented in magnetically shielded rooms that do 

not distort the magnetic field from outside sources. Also, MEG measurements are not 

specific enough for short neuronal stimuli and are often difficult to decouple from other 

neurological sources of electrical activity [60], [61].   

1.2.3 Functional magnetic resonance imaging (fMRI) 

One of the most commonly used brain imaging techniques for a variety of applications 

is the functional magnetic resonance imaging (fMRI) technique. fMRI takes advantage of 

the paramagnetic properties of deoxygenated properties of hemoglobin (HHb) to quantify 

functional activation changes in cortical tissue. This technique is based on the theory that 

neural correlates to stimuli result in increased cerebral blood flow (CBF). [60], [61]. Thus, 

the resulting increase in oxygenated hemoglobin is also accompanied by a decrease in 

deoxygenated hemoglobin. Due to four unpaired electrons for each molecule, 

deoxygenated hemoglobin presents a significantly large magnetic susceptibility effect that 

disrupts the magnetic field produced by the MRI [63]. This effect is not observed for 

oxygenated hemoglobin, since HbO2 is diamagnetic. As a result, HHb changes can be 

quantified using the Blood Oxygen Level Dependent (BOLD) contrast under a high 

magnetic field. BOLD signals are reported as contrast-enhancing agent when presented 

with neuronal activation. In numerous fMRI based studies, the BOLD signal is considered 

a metric that quantifies activation responses due to neuronal activity.  

Practically speaking, fMRI offers very high spatial resolution compared to most other 

forms of non-invasive brain imaging. Generally, there is a tradeoff between spatial 
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resolution and temporal resolution, since acquisition and processing time for smaller 

voxels takes significantly more time [61]. Many studies utilize conventional 1-3 Tesla 

scanners, that offer voxel sizes of approximately 2mm3 with temporal resolutions on the 

order of a few seconds [60], [61]. These advantages are the primary reasons that many 

functional brain imaging studies utilize fMRI as the primary method for functional 

activation and connectivity measures.   

1.2.4 Positron emission tomography (PET) 

Adopted well before MRI as a common practice for brain imaging methods, PET 

utilizes radiopharmaceutical agents that are tagged with a positron emitter. PET takes 

advantage of positron emitting radionuclides, that have very short half-lives, to map 

specific functional activation changes in the brain due to metabolic activity. These 

isotopes generally have very short half-lives and commonly consist of isotopes such as 

18F, 15O, 11C, and  13N [61]. As functional activation increases during a stimulus onset, 

increased metabolic activity in cortical tissue increases the uptake of O2, due to cellular 

glycolysis. These O2 molecules have radiotracers that are subsequently detected as tracer 

emitted positrons. This emitted positron will collide with nearby electrons to form a 

positronium, which eventually undergoes an annihilation process and emits two high 

energy photons with 511 KeV each[61]. A common technique of injecting 15O isotope 

labeled water, in the form of H2
15O, directly into the bloodstream allows for PET to 

accurately measure regional changes in cerebral blood flow with spatial resolution on the 

order of 3-4mm [60], [61]. However, temporal resolution is significantly poor where each 

image scan and registration is on the order of 40 seconds [61].  

1.2.5 Limitation of non-invasive brain imaging methods 

Each of these common non-invasive brain imaging methods have inherent advantages 

and drawbacks that differentiate their applicability and features for various brain imaging 

studies. The most significant advantages and disadvantages of each method are listed in 

Table 1.2. A schematic detailing the spatial and temporal resolution trade-offs for brain 

imaging method is also shown in Figure 1.4. Note the inclusion of fNIRS for completeness 
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of comparisons. A more detailed review of fNIRS, however, is presented in the latter 

section 1.3.  

 

Figure 1.4: Schematic outlining the temporal and spatial resolution estimates for common non-

invasive brain imaging methods [64].  

Table 1.2: Advantages and disadvantages of currently used functional brain imaging modalities [60], 

[61]. 

Modality Advantages Disadvantages 

fMRI • Non-invasive 

• Sensitive to deep brain structures 

• High spatial resolution (~1mm) 

 

• Low temporal resolution (0.1 Hz) 

• Confined to supine position 

• Sensitive to motion artifacts 

• Incompatible with metallic objects, 

particularly surgical tools 

EEG • High temporal resolution (10 – 250 

Hz) 

• Cumbersome gel application for adequate 

probe contract  

• Low spatial resolution (2-5 cm) 

• Low specificity to different cortical 

regions 

• Sensitive to motion artifacts 

MEG • Insensitive to superficial tissue (skull, 

scalp, dura, etc.) 

• Incompatible with metallic objects, 

particularly surgical tools 

• Highly sensitive to outside sources of 

magnetic fields 

• Low spatial resolution 

• Unspecific to transient cortical activation 

PET • Insensitive to motion artifacts 

• High spatial resolution (3-4mm) 

• Significant radiation exposure 

• Short half-life of isotopes 

• Low temporal resolution (0.25 Hz) 

• Expensive 

fNIRS • Inexpensive, portable, and non-

obtrusive to motor tasks 

• Insensitive to motion artifacts 

• High temporal resolution (100 Hz) 

• Relatively low spatial resolution (~1 cm) 

• Spatial resolution dependent on probe 

design 

• Anatomical information cannot be directly 

measured 

• Sensitive to light absorbing media (hair) 
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1.3 Functional near-infrared spectroscopy (fNIRS) 

Functional near-infrared spectroscopy (fNIRS) is an indirect, non-invasive brain 

imaging method that measures cortical activation by detecting hemodynamic response 

changes due to a stimulus. Frans Jöbis, widely considered the founding father of fNIRS, 

published the foundations for this concept by showing that near-infrared light at specific 

wavelengths can be attenuated and detected through turbid media [65]. Of course, several 

decades later, fNIRS instrumentation, post-processing, and applications have been 

significantly studied. However, our understating of bimanual skills and applications in 

surgical motor skills have been relatively untapped. This section is devoted to the fNIRS 

modeling, hardware and software methodologies, advantages and disadvantages of fNIRS 

along with a current literature review on fNIRS with specific applications to surgical skills.  

1.3.1 fNIRS modeling 

To model near-infrared light propagation through turbid media, such as cortical tissue, 

we first start with the diffusion equation in highly turbid media as shown below [66]: 
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, where Φ(r,t) is the photon fluence rate with dimensions (photons / cm2 * s), v is the speed 

of light, S(r,t) is the isotropic source term that is the number of photons emitted at position 

r and at time t, µa is the absorption coefficient, µs is the scattering coefficient, and the 

photon diffusion coefficient D. 

The diffusion coefficient D is defined [66]:  
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since µ’s >> µa is most tissue types [66]. The highly scattering media coefficient is defined 

below [66]: 

 (1 )s sg     (1-3) 

where µs is the inverse of the photon random walk pathlength l, and g = <cos θ> where g 

is the ensemble averaged cosine of the scattering angle associated with single scattering 

events in the sample [66].  
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Note that absorption and scattering coefficient are wavelength dependent for each type 

of chromophore within the highly scattering media. For near-infrared wavelengths within 

the 650 - 950nm range, otherwise also known as the “optical window” [66], the primary 

chromophores are oxygenated and deoxygenated hemoglobin. With this knowledge, the 

wavelength dependent absorption coefficient can be defined below [66]:  

 
2 2( ) ( )[ ] ( )[ ]a HbO HbRHbO HbR        (1-4) 

where λ is the photon wavelength, ε is the extinction coefficient for HbO2 and HbR that 

are wavelength dependent, and [HbO2] and [HbR] are the concentrations of oxygenated 

and deoxygenated hemoglobin, respectively. Molar coefficients for HbR and HbO2 within 

the optical window are shown in Figure 1.5. 

 

Figure 1.5: Molar coefficients of HbO2 and HbR within the optical window (redrawn from [67]). 

 

Now that we have defined our photon fluence equation, the change in optical density 

can be formulated using the modified Beer-Lambert law as shown below [66], [68], [69]: 
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where Φ0 is the average photon fluence, L is the average path length of light through tissue. 

This equation can be further generalized with the following expression [70]: 
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where I is the detected intensity of light with respect to the incident intensity of light I0. ε 

is the extinction coefficient, c is the chromophore concentrations, L is the distance 

between the source and detector, and DPF is the differential path-length. 

It is important to note that Equation (6) significantly underestimates the actual 

changes in HbO2 and HbR concentrations [66], [70] due to the assumption that the Beer-

Lambert law is specific to homogenous tissue. Since cortical tissue is highly 

heterogeneous in nature, a correction can be made to the underestimating of hemoglobin 

concentration by incorporating the partial differential pathlengths [66], [70]. 

Finally, the change in optical density data can be converted to the hemoglobin 

concentration changes using the following expression [66], [68]–[70]: 
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 (1-7)

   

where the final oxy and deoxy hemoglobin concentration changes with respect to time can 

be calculated in the cortex due to a stimulus response. This formulation is used to create 

the hemodynamic response function (HRF) that is used for reporting of real-time 

hemoglobin concentrations changes in fNIRS studies. 

1.3.2 fNIRS hardware 

fNIRS imaging modalities are split into three categories: continuous wave, frequency 

domain, and time domain systems. Continuous wave (CW) systems are only dependent 

on light intensity measurements, where near-infrared light at defined wavelengths and 

intensity are delivered to turbid media and the backscattered light is subsequently 

measured [70]. The primary disadvantage of CW systems is the inability to determine 

absolute concentrations of chromophore concentrations, since absorption or scattering 

coefficients cannot be absolutely measured. With most CW system, a source and detector 

channel distance of >2.5cm is generally recommended to ensure a constant DPF in tissue 

types [71]. While CW systems are versatile and robust for human imaging studies, this 
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methodology also assumes that coupling and light scattering effects are constant over time, 

and that hemoglobin absorption changes are solely due to blood [71].  

Frequency domain (FD) systems utilize a continuous laser source at specific 

frequencies while modulating this source to record the relative phase shift of the entering 

and exiting light [71]. Using this approach, it is possible to separate absorption and 

scattering coefficients for an assessment of not only chromophore concentration but also 

lifetime measurements. This leads to improved spatial resolution than CW systems [71]. 

Since FD based systems require modulated lasers along with phase measurements of light 

exiting from turbid media, this approach is generally more expensive than CW systems. 

The main advantages, however, are increased spatial resolution and specificity to absolute 

concentrations of hemoglobin concentrations [66], [71].  

Time domain devices utilize short pulsed laser sources (generally picosecond 

resolution) to detect photon intensity and ultimately calculate the delay between pulse 

emission and reception [71]. Time domain systems often contain the most information 

rich datasets that can also subsequently be used to create CW or FD datasets. Furthermore, 

the spatial resolution of time domain systems is significantly higher than CW or FD 

systems, but is accompanied with drawbacks including high instrumentation costs, bulky 

systems, and lower temporal resolutions. [70], [71]. Figure 1.6 shows the infrared light 

delivery and measurement approaches for CW, TD, and FD fNIRS systems. This work 

utilizes a 32-channel continuous-wave near-infrared spectrometer developed by TechEn 

Inc. (MA, USA) due to the versatility geared towards human subject research.  

 

 

(a)  (b)  (c) 

Figure 1.6: Different modalities of fNIRS imaging system that include (a) continuous-wave, (b) 

frequency domain, and (c) time domain systems [70]. 
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1.3.3 fNIRS in bimanual surgical motor skills 

While relatively new, the concept of utilizing fNIRS for brain imaging applications 

in surgical skill assessment has been broached by several groups. The task paradigm, 

subject selection, and cortical region of interests are varied for these studies but have 

commonalities in specific findings. For example, in general, the prefrontal cortex 

activation is significantly higher in novices or trainees compared to experts in most fNIRS 

based studies. A summary of fNIRS specific studies on surgical motor skill is shown in 

Table 1.3. 

Table 1.3: Summary of fNIRS studies to assess surgical motor skill. 

 

 

 

 

Author Task Neurological findings correlated to surgical 

performance 

Leff et al (2008) 

[72] 

Open surgical knot tying • PFC activation: Novice have higher 

activation than experts, trainees have 

significantly different activation than experts 

• Significant changes in PFC activation with 

skills training 

Ohuchida et al 

(2009)[73]  

Laparoscopic knot tying • Significant increases in PFC activation for 

trainees compared to experts 

• Significant increases in PFC activation for 

novices after 2-hour training 

James et al 

(2011)[74]  

Endoscopic camera 

navigation task 
• High lateral PFC activation in novice and 

expert groups. 

• Significantly higher lateral PFC activation in 

specific channels for Experts 

Crewther et al 

(2016)[75]  

Laparoscopic knot tying • Significantly higher PFC activation in 

novices compared to experts 

• Changes in PFC activation reverted to 

baseline after 8-hour period of training 

Andreu-Perez et 

al (2016)[76]  

Laparoscopic knot tying • Significantly higher PFC and premotor 

activation in novices compared to experts 

Shewokis et al 

(2017)[77]  

Laparoscopic 

cholecystectomy in VR 

environment 

• Significantly lower PFC activation with 

increased training 
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While these studies have broached the concept of fNIRS usage for surgical motor skill 

differentiation, they present several limitations. These limitations are outlined below: 

• Lack of primary motor cortex and supplementary motor area measurements for 

objective surgical skill differentiation [60]. The implications of these cortical 

regions are further discussed in section 1.4. 

• Lack of fNIRS studies that measure functional activation changes during surgical 

skill transfer from simulation to clinically relevant environments 

• Lack of studies that compared fNIRS metrics for surgical skill assessment with 

established assessment metrics [60], [78].  

• Grossly overestimated hemodynamic responses due to inclusions of superficial 

tissue signals stemming from scalp, skull, dura, and pial matter [79]–[81]. 

• Lack of functional connectivity studies that correlate surgical skill learning with 

increased connectivity in specific cortical regions. 

 

This work aims to comprehensively address these limitations in current fNIRS studies for 

surgical skill assessment. 

1.4 Neurophysiology of human motor skill learning and retention 

Now that fNIRS has been identified as a dominant imaging technique with specific 

benefits for real-time measurements of cortical activity during a complex bimanual 

surgical task, we need to identify the regions of interest for cerebral measurements. To 

determine this, a firm understanding of motor control physiology and the implications of 

various cortical regions on motor skill learning and execution is needed. This section is 

overview of motor skill physiology, relevant anatomy, and mechanisms for motor skill 

learning and retention.  

1.4.1 Motor control physiology 

Human motor control involves several cortical regions that function dependently with 

each other for voluntary motor function. The fundamental mechanism is where neuronal 

axons from the cortical regions and brain stem will descend through specific motor 

pathways to control specific muscle motor units. Five cortical regions, the prefrontal 
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cortex (PFC), primary motor cortex (M1), supplementary motor area (SMA), premotor 

area, thalamus, and the basal ganglia will be discussed in this section regarding their 

specific implications for motor control [82]. 

The first region, located in the frontal lobe, is the prefrontal cortex. This region is 

located anterior to the premotor cortex and includes a number of substructures such as the 

granular frontal area 9, frontopolar area, Brodmann’s prefrontal area 11 [83], [84]. The 

PFC is directly involved with other cortical lobes such as the temporal or parietal due to 

its role in high order cognitive functions, such as intellectual, judgmental, and predicative 

functions [60].  

Located anterior to the central sulcus is the precentral gyrus, which is also called the 

primary motor cortex (M1). The precentral gyrus can also be represented using a motor 

homunculus. This visual depiction shows that the precentral gyrus, which comprises of 

the M1, is specific to degree of precision instead of the size of each body part. Figure 1.7 

shows the somatotopic representation, also known as the motor homunculus, for one 

hemisphere of the central sulcus. 

 

Figure 1.7: Somatotopic representation of body parts from medial to lateral direction in the precentral 

gyrus[84].  
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The primary function of the M1 is voluntary control of motor movements. The 

primary mechanism of motor control is where neuronal axons travel down to synapses 

directly attached to motor neurons in muscle motor units. The pathway for the axons is 

called the corticospinal tract where axons descend from the cerebral hemisphere by 

passing through the corona radiata and into the crus cerebri of the midbrain. These groups 

of axons, called corticospinal fibers, pass through the pons onto the ventral surface of the 

medulla oblongata. These corticospinal fibers decussate in the caudal medulla before 

terminating in several ventral horns of the spinal cord. Upon fiber termination, 

monosynaptic contacts are made with motor neurons associated with each limb. Figure 

1.9 shows the corticospinal tracts of axonal fiber pathways for motor skill execution. Note 

that a significant amount of fibers will decussate upon leaving the medulla, thus indicating 

that motor function is associated with contralateral activation in the cerebrum.  
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Figure 1.8: Corticospinal tract diagram illustrating specific pathway of motor neurons from the 

cerebrum to muscle motor units [83].  

Located on the medial surface of the premotor cortex, the supplementary motor area 

(SMA) is another region that is heavily involved in the voluntary control of motor 

movements. Neurons in this region are correlated to the selection of specific movements 

based on the task at hand. The SMA is mainly responsible for functions such as postural 

stability, bimanual coordination, and the initiation of motor movements [83], [84]. 

However, the specific pathways of how the SMA is involved for these various functions 

is still largely unknown.  

The thalamus is almost completely surrounded by the cerebral hemisphere and 

primarily acts as a relay of information for neural fibers from the basal ganglia and the 

cerebellum during motor control. Comprised of the ventral anterior and ventral lateral 
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nuclei, the thalamus is an important region as it directly influences normal movement 

control with specific neuronal pathways to the M1, PFC, and SMA [60], [83], [84]. More 

specifically, the ventral lateral nucleus also has connections to the M1 via regions in the 

Thalamus called the pars oralis (VLo), pars medialis (VLm) and the pars caudalis (VLc) 

[83].  

The basal ganglia lies deep within the cerebral hemisphere and is mainly comprised 

of the caudate nucleus, putamen, and the globus pallidus. These three regions combined 

are generally called the corpus striatum [83], [84]. Functionally, the basal ganglia 

facilitates specific movements along with strict suppression of unwanted movements. For 

example, when the M1 region initiates neuronal discharge through the corticospinal tract, 

these fibers will pass through the neostriatum. The neostriatum has a direct pathway, that 

results in overall excitatory effects of motor neurons stemming from the M1, along with 

an indirect pathway, which leads through the subthalamic nuclei to suppress unwanted 

movements that may hinder specific fine movements initiated by the M1 [83].  

1.4.2 Motor skill learning 

Motor skill learning follows a complex neurophysiological pathway that has only 

recently been understood with the advent of brain imaging techniques. Since a complex 

motor skill is often composed of multiple sequences of movements [85], to truly 

understand the mechanism of motor skill learning, the fundamentals of how motor 

sequences are acquired must be understood. However, how exactly are such motor 

sequences acquired for long term memory? Precisely designed to address this question, 

the 2x5 task has been used in many studies that allows the subject (human or primate) to 

learn to press buttons in the cored order via trial and error [86]. Results have shown that 

the presupplementary motor is activated during the learning of new sequences, but not for 

the performance of these learned sequences [82], [87]. Furthermore, deficits in new motor 

sequence learning have also been shown with the functional blockage of the SMA [82], 

[88]. Other areas of the motor cortex such as the anterior cingulate cortex ventral to the 

SMA and the primary motor cortex (M1) not only contribute to motor learning but undergo 

functional and structural changes [89]–[92].  
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Functional imaging studies involving the 2x5 task and fMRI have also shown 

corroborative evidence that SMA and the PFC are associated with the early stages of 

learning. A study by Sakai et al. showed that dorsolateral PFC and the SMA were activated 

during the early stages of motor skill learning whereas the parietal areas (intraparietal 

sulcus and the precuneus) were activated at later stages [93]. Another study showed results 

that the awareness of performance, also called explicit learning, induces prefrontal cortex 

and preSMA activation but not the sensorimotor cortex [94]. Several behavioral studies 

also show that different parts of the brain account for different aspects of motor skill 

acquisition. For example, the accuracy of motor performance is acquired before speed 

[86]. Accuracy has also been shown to be effector unspecific where speed is effector 

specific [82], [95], [96]. Once the learning period has been established, the motor skill is 

maintained for a long duration in the form of speed [86].  

In addition to the preSMA, dorsolateral prefrontal cortex, and the primary motor 

cortex, there are other structures within the brain that are crucial for skill acquisition and 

motor learning. Functional studies have shown that the basal ganglia (BG) and the 

cerebellum (CB) are significantly involved in motor sequence learning [97], [98]. For 

example, the group activity of striatal neurons changes in the BG with long-term motor 

learning [99]. Furthermore, depletions in dopamine and blockages of the posterior striatum 

lead to performance deficiencies of motor skills, whereas the anterior striatum of the BG 

leads to deficiencies in learning new motor skills [99]–[101]. Like the BG, the cerebellum 

(CB) is also involved in the learning of new motor skills. Studies involving specific lesions 

in the cerebellum indicate that it impairs motor sequence learning but not conditional 

visuomotor learning or spatial working memory [82], [102]. Studies have shown that the 

blockade of the dorsal part of the dentate nucleus, which is part of M1, does not affect 

learning new sequences but disrupts skill performance [103]. Other studies however have 

shown that the long term motor skill memories are stored in the CB [104], indicating there 

is inconsistency within the literature on the role of CB for motor skill learning. Figure 1.9 

below is a model developed by Hikosaka et al. illustrating the pathway for motor skill 

learning regarding spatial and motor sequences. 
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Figure 1.9: Schematic illustrating the motor skill learning pathway involving spatial and motor 

sequences [82]. 

 

With the advent of modern medical imaging, our understanding of complex motor 

learning pathways, consolidation, and retrieval have been vastly increased. For example, 

the neural substrates of learning stages were studies using positron emission tomography 

(PET), and functional magnetic resonance imaging (fMRI). Specific learning paradigms, 

such as fast learning of sequential motor tasks, were showed to modulate regional brain 

activity in the dorsolateral prefrontal cortex, primary motor cortex (M1) and the preSMA 

[105], [106]. Furthermore, these studies showed decreased activation as learning 

progresses in the premotor cortex, SMA, parietal regions, striatum and the cerebellum. 

Conversely, all of these areas showed increased activity during motor task learning via 

PET studies [94], [105], [107]. Thus, learning is associated with differential modulation 

of blood oxygenation level-dependent (BOLD) activity. 
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Another key region for fast learning, as stated before, is the M1. Numerous functional 

studies have been conducted to implicate the role of M1 during the initial stages of 

learning. For example, Costa et al, used behavioral mice models to study long term 

potentiation and depression suing a rotarod task. They were able to show the substantial 

recruitment of neurons in M1 during the initial motor skill learning of the rotarod task 

[108]. Similarly, PET and fMRI studies have shown the same consistency in humans 

where the learning a motor task modulates long-term potentiation plasticity in the M1 

region [109], [110]. 

Slow motor skill learning involves quantitatively smaller changes than those during 

fast learning, and often develop at a much slower pace [111], [112]. These differ 

significantly from fast motor skills since they often reach a plateau of performance during 

learning. For example, this can be seen when an artist plays musical pieces on a violin, or 

a surgeon performs many procedures. Complex tasks such as these often take several 

instances of practice and even years to master. To corroborate this statement, studies have 

used fMRI to show functional brain activation shifts from anterior to posterior regions of 

the brain when progressing from early to late stages of motor skill [105]. Furthermore, 

more functional imaging studies have shown that the progression from fast to slow motor 

skill learning is also associated with a shift in activation from the associative to 

sensorimotor striatum [113], [114]. Slow learning has also been shown to elicit large 

functional reorganization in the brain. For example, a motor task was used for subjects 

over a 4-week period. fMRI results indicated that decreased integration in the premotor-

associative striatum cerebellar network but high connectivity within the M1-sensorimotor 

striatum network. [105], [114]. Large plastic changes in the M1 function due to slow motor 

learning have been well studied in animal models. For example, reorganization of 

movement based motor learning have been documented in squirrel monkeys due to 

continued slow learning of tasks with substantial practice periods [115], [116]. However, 

similar studies are minimal for human based models. Specifically, the extent to which 

changes in motor maps due to slow motor skill training in humans is still not understood 

[112]. A schematic illustrating the functional activation responses due to slow motor 

learning in specific cortical regions is shown in Figure 1.10 below. 
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Figure 1.10: Schematic illustrating neural substrates and their activations during slow motor learning 

[112]. 

1.4.3 Motor skill retention 

Motor memory retention, or consolidation, is defined as a set of processes that are 

post-acquisition and time dependent when a motor memory becomes more stages with 

time [117]–[119]. These processes of consolidation may be behaviorally evident as an 

improvement in performance between practice sessions for the given motor task [120], 

[121]. Studies have shown that the importance of memory consolidation is directly 

correlated to perturbations in the consolidation processes, and subsequently the retention 

of motor skill [122]–[124]. For example, low frequency repetitive transcranial magnetic 

stimulation (rTMS) over the primary motor cortex M1 immediately following practice of 

a reaction time task blocked any offline improvements in the skill [124]. This indicates 

the implication of the M1 cortex as an intermediary for the long-term retention of motor 

skill. Disruptive effects of rTMS on learning were only present when stimulation is applied 

immediately after practice and delayed by hours [124]. Ultimately, this indicates that there 

is active post-practice consolidation process that is responsible for offline learning, which 

results in the attainment of long term motor skill mastery. Compounding the consolidation 

process directly after practice, evidence suggests that motor memory also undergoes 
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consolidation over the sleep period [125], [126]. During sleep, consolidation occurs during 

repeated cycles of non-REM sleep followed by REM sleep [127].  

Memory retrieval is a key process in the overall retention of skill mastery. However, 

few studies have assessed the retrieval process for motor skill acquisition. Specific to 

motor skill, evidence exists to suggest that practice conditions that promote cognitive 

processes are required for retrieval of skills, often to enhance retention performance [117]. 

Another study for motor skill transfer and retrieval was conducted by Lin et al [128]. They 

investigated functional brain activation with fMRI during the retention of three finger 

sequences that were practiced in blocked or random orders. During acquisition the 

random-order practice was associated with longer response times. However, during motor 

skill retention, the random-order finger sequences had shorter response times, which is 

essentially higher performance. Since higher cognitive demands during random practice 

invoke premotor and prefrontal network activation, these networks became more efficient 

in the cognitive processing of information, as shown by reduced BOLD signals despite 

superior performance via MRI [117], [128].  

1.4.4 Gaps in bimanual motor skill neurophysiology knowledge 

While tremendous research efforts have shown significant insights into the underlying 

neural mechanisms for motor skill control and learning, several gaps still exist in current 

literature for a comprehensive understanding of motor skill learning and execution 

mechanisms, particularly in complex bimanual motor skills.  

Majority of studies that address neurophysiological mechanisms for motor skill levels 

utilize motor movements that depend on event timing, such as finger tapping, or visual 

cues for finger flexion tasks [129]. Evoked neural correlates from these unimanual based 

tasks are often the basis of reporting fundamental functional changes with respect to motor 

skill learning and do not address the continuous movements often present in bimanual task 

[129]. Another limitation is that majority of motor skill learning studies utilize tasks that 

isolate specific movement frequencies. These movements are very transient in nature, 

focus on hand dominance, and focus on specific event marked movements. Complex 

surgical tasks, however, are often comprised of continuous hand movements, 

asynchronous motor behavior, and are largely unstudied in motor skill learning studies.  
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Another major limitation is that majority of motor skill neurophysiology studies do 

not specifically distinguish between motor skill learning and performance [129]. For 

example, many studies have focused on using EEG or MRI based approaches on the initial 

stages of motor learning and do not specifically resolve the transition states from early to 

late stages of motor skill learning [129]. This can be addressed with studies that 

specifically measure neural correlates for motor skill between experts, novices, and 

subjects that transition from early to late stages of motor learning. Such studies would 

comprehensively assess neural correlates for bimanual task production as motor skill 

learning stages transition and ultimately provide a deeper understanding of motor skill 

performance [129].  

1.5 Specific aims 

Based on the discussions above, fNIRS was chosen as the noninvasive imaging modality 

for assessing bimanual fine motor skills that underpin surgical expertise. However, the 

existing literature in this field point to the following major gaps: 

• Lack of brain imaging studies that differentiate and classify surgical motor skill levels 

with direct comparisons to established skill assessment metrics 

• Lack of brain imaging studies that differentiate and classify surgical motor skill 

transfer from simulation to clinically relevant environments 

• Lack of brain imaging studies that quantify functional connectivity changes with 

varying degrees of surgical motor skills  

 

Aim 1 is to establish fNIRS-based metrics to objectively differentiate and classify 

surgical motor skill proficiency. The milestone for Aim 1 is when fNIRS is more 

accurate and specific in surgical skill assessment than established measures, which are 

based on performance time and errors.  

Aim 2 is to establish metrics to objectively differentiate and classify surgical 

motor skill transfer between trained and untrained subjects based on fNIRS. The 

milestone for Aim 2 is when fNIRS is more accurate and specific in surgical skill transfer 

assessment than established measures, which are based on performance time alone. 
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Aim 3 is to identify cortical regions within the PFC, M1, and SMA that have 

significantly high functional connectivity correlations to surgical motor skill 

proficiency, using established measures of functional connectivity. The milestone for 

Aim3 is met when functional connectivity metrics between specific combinations of PFC, 

M1, and SMA cortical regions is higher than 0.5 and are significantly higher for subjects 

with increased surgical motor skill proficiency regardless of simulation platform. 

1.6 Research plan and thesis outline 

To accomplish Aim 1, subjects with varying degrees of surgical motor skills were 

recruited to perform complex, bimanual surgical training tasks while undergoing fNIRS 

imaging. Multivariate analysis was used to classify subjects based on surgical motor skill 

proficiency and directly compared to established assessment metrics.   

For Aim 2, surgical simulator trained and untrained subjects from Aim 1 were asked 

to perform a surgical transfer task on cadaveric tissue to represent surgical skill transfer. 

The resulting multivariate fNIRS metrics was used to classify successful and unsuccessful 

surgical skill transfer subjects and directly compared to established transfer assessment 

metrics.   

For Aim 3, functional connectivity metrics will be derived from cortical activations 

in in the PFC, M1, and SMA for all subjects from Aim 1 and 2. These resulting metrics 

will be compared between inter and intra subject to establish correlation of functional 

connectivity to surgical motor skill.  

The remainder of this thesis is organized as follows. Chapter 2 focuses on examining 

Aim 1 by proposing fNIRS as a mean for accurate differentiation and classification of 

surgical skill levels. Chapter 3 focuses on addressing Aim 2 to establish fNIRS metrics as 

accurate classification of trained and untrained subjects for surgical motor skill transfer.  

Chapter 4 focuses on addressing Aim 3 to examine specific cortical regions that exhibit 

high functional connectivity, and are also correlated to increased levels of surgical motor 

skills. Finally, thesis summary along with potential areas for future research are presented 

in Chapter 5. 
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2. Assessing bimanual motor skills with optical neuroimaging 

2.1 Overview 

Motor skills that involve bimanual motor coordination are essential in performing 

numerous tasks ranging from simple daily activities to complex motor actions performed 

by highly skilled individuals. Hence, metrics to assess motor task performance are critical 

in numerous fields including neuropathology and neurological recovery, surgical training 

and certification, and athletic performance [49], [130]–[135]. In the vast majority of fields, 

however, current metrics are human-administered, subjective, and require significant 

personnel resources and time.  Thus, there is critical need for more automated, analytical, 

and objective evaluation methods [7], [47]–[50]. From a neuroscience perspective, 

bimanual task assessment provides insights into motor skill expertise, motor dysfunctions, 

interconnectivity between brain regions, and higher cognitive and executive functions, 

such as motor perception, motor action, and task multitasking [135], [136]. Therefore, 

incorporating the underlying neurological responses in bimanual motor skill assessment 

is a logical step towards providing robust, objective metrics, which ultimately may lead to 

greatly improving our understanding of motor skill processes and facilitating bimanual-

based task certification. 

Among all non-invasive functional brain imaging techniques, functional near infrared 

spectroscopy (fNIRS) offers the unique ability to monitor and quantify fast functional 

brain activations over numerous cortical areas without constraining and interfering with 

bimanual task execution. Hence, fNIRS is a promising neuroimaging modality to study 

cortical brain activations but to date, only a very limited number of studies have been 

reported in regards to assessing fine surgical motor skills [60].  

 

Portions of this chapter previously appeared as:  

A. Nemani, W. Ahn, C. Cooper, S. Schwaitzberg, and S. De, “Convergent validation and transfer of learning 

studies of a virtual reality-based pattern cutting simulator,” Surg. Endosc., to be published. doi: 

10.1007/s00464-017-5802-8. 

A. Nemani, X. Intes, and S. De, “Monte Carlo based simulation of sensitivity curvature for evaluating 

optimal probe geometry,” in Biomedical Optics 2014, pp. 3-36. 

A. Nemani et al., “Assessing bimanual motor skills with optical neuroimaging,” submitted for publication. 
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These exploratory studies have reported differentiation in functional cortical 

activations between groups with varying surgical motor skills [60], [72], [73], [137], 

[138]. However, they suffer from recognized limitations [60] such as such as the lack of 

signal specificity between scalp and cortical hemodynamics [80], [81], the lack of 

multivariate statistical approaches that leverage changes in functional brain activity across 

multiple brain regions, and benchmarking against established metrics. Hence, they have 

not impacted current practice of professional bimanual skill proficiency assessment. Here, 

we present a fNIRS-based optical neuroimaging methodology that overcomes all these 

shortcomings at once. For the first time in the field, we measure concurrently functional 

activations in the prefrontal cortex (PFC), the primary motor cortex (M1), and the 

supplementary motor area (SMA) to map the distributed brain functions associated with 

motor task strategy, motor task planning, and fine motor control in complex bimanual 

tasks[82], [87], [92]–[94], [139], [140]. Moreover, we increase the specificity of optical 

measurements to cortical tissue hemodynamics by regressing signals from scalp 

tissues31,35,36. Furthermore, we leverage changes in intraregional activation and 

interregional coupling of cerebral regions via multivariate statistical approaches to classify 

subjects according to motor skill levels. Finally, we compare our fNIRS based approach 

with currently employed metrics in surgical certification by assessing bimanual motor 

tasks that are a part of surgical training accreditation. 

The performance of the reported optical neuroimaging methodology enables the 

objective assessment of complex bimanual motor skills as seen in laparoscopic surgery. 

Indeed, imaging distributed task-based functional responses demonstrated significant 

cortical activation differences between subjects with varying surgical expertise. By 

leveraging connected cerebral regions correlated to fine motor skills, we report increased 

specificity in discriminating surgical motor skills via fNIRS based metrics. For the first 

time, we show that our approach is significantly more accurate than currently established 

metrics employed for certification in general surgery, as reported via estimated 

misclassification errors. These results demonstrate that the combination of advanced 

fNIRS imaging with multivariate statistical approaches offers a practical and quantitative 

method to assess complex bimanual tasks. Topically, the reported optical neuroimaging 
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methodology is well suited to provide quantitative and standardized metrics for bimanual 

skill-based professional certifications. 

2.2 Methods 

The study was approved by the Institutional Review Board of Massachusetts General 

Hospital, University of Buffalo, and Rensselaer Polytechnic Institute. 

2.2.1 Hardware and equipment 

We utilize a validated continuous-wave, 32-channel near- infrared spectrometer for 

this study, which delivered infrared light at 690nm and 830nm (CW6 system, TechEn Inc., 

MA, USA). The system employed eight long distance and eight short distance illumination 

fibers coupled to 16 detectors. The long-distance channels comprised all the measurements 

within a 30 – 40mm distance between the source and the detector, and the short distance 

channels comprised all the measurements within a ~8mm distance between the source and 

the detector. The short channels are limited to probing the superficial tissue layers, such 

as skin, bone, dura and pial surfaces, whereas the long channel probed both superficial 

layers and cortical surface. The probe design was assessed using Monte Carlo simulations 

and was characterized to have high sensitivity to functional changes in the PFC, M1, and 

SMA. A schematic of the geometric arrangement of probes are shown in Figure 2.2. 
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Figure 2.1: Infrared probe geometry positioning. Schematic of probe placement projected on cortical 

locations specific to the PFC, M1, and SMA. Optodes are placed for maximum coverage over the PFC, 

M1, and SMA. Red dots indicate infrared sources, blue dots indicate long separation detectors, and 

textured blue dots indicate short separation detectors. The PFC has three sources (1-3), the M1 has 

four sources (4-7), and the SMA has one source (8). Each of the sources are connected to their 

corresponding long and short separation detectors [54]. 

2.2.2 Participants and experimental design 

17 surgeons and 13 medical students participated in this study. The minimum number 

of samples required for this study was determined a priori using power analysis according 

to the two-sample t-test comparing the means between two groups. Based on an initial 

pilot study, a conservative effect size (d=1.4) was chosen for the prefrontal and motor 

cortices. Furthermore, with 95% confidence interval, and a minimum power of 0.80, it 

was determined that a minimum of 8 samples were required per group, which was 

calculated by a statistical software G*Power[141]. The sample population was distributed 

within Novices (n=9, 1st – 3rd year residents with mean age 31 ± 2) and Experts (n=8, 4th 

and 5th year residents and attending surgeons with mean age 35 ± 6) surgeons. Example 

subjects performing the FLS pattern cutting task are shown in Figure 2.2 and subject 

demographics are shown in Table 2.1.  
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Table 2.1: Subject demographics and descriptive data. 

 

To avoid any issues regarding hemisphere specific activation, only right-handed 

participants were selected. All participants were instructed on how to perform the task 

with standardized verbal instructions indicating the goal of the task and rules for task 

completion. The optical probes were positioned on the participant with great care to avoid 

any hair between the source/detector and scalp, as well as, robust coupling with the skin. 

The cap holding the fibers on the participant as well as the fibers did not hinder the 

participant’s movement during bimanual tasks. The participants were asked to perform the 

FLS pattern cutting task using a FLS certified simulator, where the goal is to use 

laparoscopic tools to cut a marked piece of gauze as quickly and as accurately as possible. 

The experiment for each participant consisted of a block design of rest and stimulus period 

(cutting task). The surgical cutting task was performed until completion or stopped after 

five minutes. Then a rest period of one minute was observed. The cycle of cutting task and 

rest periods was repeated five times per participant. The experimental protocol design is 

shown in Figure 2.3. The following measurements were recorded simultaneously for each 

participant during each trial: total task time, light intensity (raw NIRS data), and 

performance scores for the pattern cutting task based on the FLS metrics. 

Cohort # of 

subjects 

Mean 

age 

Training / 

Certification 

Average # of 

laparoscopic 

procedures 

Average # of 

completed 

FLS pattern 

cutting trials 

during study 

Color 

group 

Expert 

surgeon 

8 35 PGY 4-5 or 

attending 

surgeons 

700 5  

Novice 

surgeon 

9 31 PGY 1 - 3 60 5  

Skilled 

trainee 

3 27 Medical school 

year 1-4 

0 >85  

Unskilled 

trainee 

4 24 Medical school 

year 1-4 

0 >85  

Control 5 26 Medical school 

year 1-4 

0 6  
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(a)   (b) 

Figure 2.2: Subjects performing FLS pattern cutting task with fNIRS measurements. (a) An example 

medical subject, part of the FLS training group, and an example novice surgeon (b) performing a FLS 

pattern cutting task on the official FLS box trainer while undergoing fNIRS measurements in real 

time. 

 

Figure 2.3: Schematic outlining cohort and study design. FLS training group (gray) and VBLaST 

training group (purple) underwent training regiments whereas the untrained control group (orange), 

surgical novices (green) and surgical experts (red) underwent no training. m is the number of trials 

per each session block and m is the number of pattern cutting trials per each session block. 
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2.2.3 NIRS post processing 

Data processing was completed using the open source software HOMER2[142], 

which is implemented in Matlab (Mathworks, Natick, MA).  First, channels with signal 

quality outside of the range of 80dB to 140dB were excluded. The remaining raw optical 

signals (intensity at 690nm and 830nm) were converted into optical density using the 

modified Beer-Lambert law with a partial path-length factor of 6.4 (690nm) and 5.8 

(830nm) [68], [69], [143]. Motion artifacts and systemic physiology interference were 

corrected using recursive principal component analysis and low-pass filters [142], [144], 

[145]. The filtered optical density data is used to derive the delta concentrations of oxy 

and deoxy-hemoglobin. 

The short distance channels are regressed from the long-distance channels to remove 

any interference originating form superficial layers. This is achieved by using a 

consecutive sequence of Gaussian basis functions via ordinary least squares to regress 

scalp and dura activation data collected from the short separation fibers to create the 

hemodynamic response function (HRF) [80], [81], [146]. Finally, the corresponding 

source and detector pairs for each source were averaged over each subject’s task 

completion time. The result is a scalar value for the change in oxy-hemoglobin according 

to different brain regions for all participants. 

2.2.4 Task performance metrics, statistical, and classification methods 

The FLS scores were determined using the standardized FLS scoring metric 

formulation for the pattern cutting task based on time and error. This formulation is IP 

protected and was obtained with consent under a non-disclosure agreement from the FLS 

Committee, and hence its details cannot be reported in this paper. Descriptive and 

inferential statistics were performed using SPSS (IBM Inc., NY, USA). Two sample t-

tests were used to determine statistically significant differences in functional activation 

between two groups. All box plots display median values (red bar) along with standard 

deviations. A confidence level of 95% was selected as the minimum required to reject the 

null hypothesis. 

Linear discriminant analysis (LDA) was used to classify the populations based on 

their FLS scores and functional brain activation metrics. Prior to the analysis of LDA, all 
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recorded metrics were first normalized, i.e. the sample mean and variance is 0 and 1.  LDA 

determines the optimal vector, v, such that the projected metrics of two classes (ex. Novice 

and Expert surgeons) in the v direction has the highest separation between the classes with 

the lowest variance for each class [147]. The resulting LDA scores are objectively 

compared for each class and the degree of separation objectively quantified as 

misclassification errors. 

2.3 Results 

2.3.1 Surgical training task performance assessment 

To demonstrate the potential of neuroimaging as an objective tool to assess bimanual 

task expertise, we selected a challenging bimanual pattern cutting task, which is part of 

the fundamentals of laparoscopic surgery (FLS) program. Demonstrating proficiency in 

the FLS is now required for certification in general surgery by the American Board of 

Surgery. For our study, we recruited a population with varying laparoscopic surgical 

expertise as defined via the FLS program and conventional professional nomenclature. 

The subjects were either classified into established skill levels, such as Novice surgeons 

(1st – 3rd year surgical residents), Expert surgeons (4th – 5th year residents and attending 

surgeons) or into trained medical students that are labeled as Skilled or Unskilled trainees 

(see Table 2.1). The Control group constituted of medical students that underwent no 

training at all. Note that all groups were independent, i.e., each subject belonged to only 

one group. Each subject followed the official FLS pattern cutting task protocols. The 

experimental protocol followed by each cohort is provided in Figure 2.3. The FLS 

performance scores were recorded for all subjects and the cumulative sum control chart 

(CUSUM) computed for the population following a training protocol. It is important to 

note that this study is the first to acquire FLS performance scores simultaneously with the 

neuroimaging data. The FLS scoring methodology was obtained with consent under a non-

disclosure agreement from the FLS Committee. Thus, this study is the first one to report 

on direct comparisons of neuroimaging metrics and FLS scores for validation. In all cases, 

the FLS performance score were acquired simultaneously with the neuroimaging data. 

Figure 2.4 shows a schematic of the surgical trainer along with the fNIRS setup that is 

used to measure real-time cortical activation. A physical depiction of the setup is also 
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provided in Figure 2.3. Figure 2.5 reports on the descriptive statistics of the FLS 

performance score for the Novice and Expert surgeons, where Experts significantly 

outperformed Novice surgeons (p<0.05).  

 

 

Figure 2.4: Schematic depicting the FLS box simulator where trainees perform the bimanual dexterity 

task. A continuous wave spectrometer is used to measure functional brain activation via raw fNIRS 

signals in real-time. 

 

Figure 2.5: FLS performance scores for Novice surgeons (green) and Expert surgeons (maroon) where 

Expert surgeons significantly outperformed Novice surgeons. Two sample t-tests were used for 

statistical differentiation (n.s. not significant, *p<0.05). 

 

 



 

 42 

Similarly, the descriptive statistics of FLS performance scores over the whole training 

period are provided for all FLS task training subjects and untrained Control subjects in 

Figure 2.6. Results indicate that there are no significant differences between the untrained 

Control subjects and training subjects on day 1 or the pretest (p>0.05). However, the 

trained FLS students significantly outperformed the untrained Control students on the final 

post-test, which follows a two-week break period post training (p<0.05).  

 

Figure 2.6: FLS performance scores for all training subjects (black) with respect to days trained 

compared to untrained Control subjects (orange) (n.s. not significant, *p<0.05). 

 

To provide insight at the subject level, Figure 2.7 summarizes the CUSUM scores for 

each of the subjects with respect to trials performed. Trials that have a FLS performance 

score higher than 63 are considered a “success” and the respective CUSUM score is 

subtracted by 0.07 [16], [17]. Trials that have a performance score lower than 63 are 

considered a “failure” and the CUSUM score is added by 0.93 [16], [17]. Results indicate 

that three trained subjects (FLS 2, FLS 3, FLS 5) have passed the acceptable failure rate 

of 0.05 (H0) and thus are considered “Skilled” henceforth. The remaining trained four 

subjects (FLS 1, FLS 4, FLS 6, FLS 7) are considered “Unskilled” as they did not meet 

the FLS criteria for successful completion of the training program. 
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Figure 2.7: CUSUM scores for each subject with respect to trials. The H0 threshold indicates that the 

probability of any given subject is mislabeled as a “Skilled trainee” is less than 0.05, and is 

subsequently labeled as a “Skilled trainee” subject. Results indicate that three subjects, FLS-2, FLS-

3, and FLS-5 are labeled as “Skilled trainees”. The remaining subjects that do not cross the H0 line 

are labeled “Unskilled trainees”. 

2.3.2 Optical neuroimaging assessment of established surgical skill levels 

To ascertain that our neuroimaging methodology can discriminate between 

established skill levels, we quantified the real-time hemodynamic activation over the PFC, 

M1, and SMA cortical regions while Novice and Expert surgeons performed the 

standardized FLS bimanual pattern cutting (PC) task [16], [18], [20], where typical 

hemodynamic responses are shown in Figure 2.8.  
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Figure 2.8: Group average hemodynamic response functions with respect to cortical regions. Group 

average of all trials during the post-test for expert surgeons (maroon) and novice surgeons (green). 

Stimulus onset begins at zero seconds (dashed black line) indicating that the trial has started. Negative 

time indicates the baseline measurements used for calibration before each trial. 

Figure 2.9 depicts the spatial distribution of average changes in functional brain 

activation, as reported by [HbO2] for all subjects in the surgical Novice and Expert 

groups.  

 

Figure 2.9: Differentiation and classification of motor skill between Novice and Expert surgeons. (a) 

Brain region labels are shown for prefrontal cortex (PFC), primary motor cortex (M1) and 

supplementary motor area (SMA) regions. Average functional activation for all subjects in the Novice 

and Expert surgeon groups are shown as spatial maps while subjects perform the FLS task. 
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For the first time, significant differences were observed in all the PFC regions, the 

SMA, the left medial M1, and the right lateral M1 as depicted in Figure 2.10. More 

precisely, Novice surgeons have significantly higher functional activation in the PFC 

regions (p<0.05) and significantly lower functional activation in the left medial M1 and 

SMA regions when compared to Expert surgeons. Habituation, the phenomenon where a 

response to a stimulus is gradually reduced due to repetition[148], was not observed 

(p>0.05). 

 

Figure 2.10:  Average changes in hemoglobin concentration during the FLS task duration with respect 

to specific brain regions for Novice (green) and Expert (maroon) surgeons. Two sample t-tests were 

used for statistical tests (
n.s. 

not significant, 
*
p<0.05). 

While motor skill discrimination as reported via significant differences in the 

measurements from different cortical regions is typically central to neuroscience discovery 

studies, it does not provide insights into the utility of the data set to achieve robust 

classification based on quantitative metrics, such as accomplished during certification 

(i.e., successfully pass a performance-based manual skills assessment). To quantify the 

performance accuracy of neuroimaging based classification of individuals in preset 

categories such as Novice surgeons (failed certification) and Expert surgeons (passed 

Posterior 

Anterior 

Lateral 
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certification), we post-computed misclassification errors (MCEs) associated with current 

accredited FLS performance scores and with our neuroimaging method.  

 

We employed a multivariate statistical method, namely linear discriminant analysis 

(LDA), to estimate the MCEs associated with the FLS and fNIRS based measurements. 

MCEs are defined as the probability that the first population is classified into the second 

population (MCE12) and the second population is classified into the first population 

(MCE21). Perfect classification is indicated by MCE = 0% and complete misclassification 

is indicated by MCE = 100%. Figure 2.11 reports on these two misclassification errors for 

FLS performance scores and all combinations of fNIRS metrics for the classification of 

surgical Experts and Novices. Results indicate that subject classification is relatively poor 

when considering FLS performance scores only (MCE12=61% and MCE21=53%). On the 

other hand, neuroimaging based quantities provide lower errors (besides SMA only). 

Specifically, the combination of PFC, left medial M1 (LMM1) and the SMA leads to the 

overall lowest MCEs (MCE12=4.4% and MCE21=4.2%). 

 

 

Figure 2.11: LDA classification results between Experts and Novices for FLS scores and all 

combinations of fNIRS metrics. 

 

Additionally, we provide the leave-one-out cross-validation results for the LDA 

classification models used for this data set, as seen in Figure 2.12. This approach assesses 

the robustness of the LDA classification model, where each sample is systematically not 

used to build the LDA model and is treated independently. Results show that the 

combination of PFC + LMM1 + SMA leads to the most robust and best performing data 



 

 47 

sets to build the classification model, as demonstrated by the fact that 100% of the samples 

in the leave-one-out cross-validation have MCEs < 5%.  

 

Figure 2.12: Leave-one-out cross-validation results show the ratio of samples that are below 

misclassification error rates of 0.05 for FLS scores and all other combinations of fNIRS metrics. 

 

The specific distributions of the classification results are shown in Figure 2.13. 

Furthermore, weights for each cortical region and their respective contribution to the total 

LDA model were also determined to show the correlation between different cortical 

regions on motor skill proficiency. The weights for left lateral PFC (0.58), medial PFC 

(0.23), right lateral PFC (0.29), left medial M1 (-0.70), SMA (0.14) contribute to the entire 

discriminant function with the norm of all the weights equal to 1.0. Three regions (left 

lateral PFC, right lateral PFC, and left medial M1) account for 96.18% of discriminant 

function indicating the preponderance of these regions for a robust and accurate subject 

classification.  
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(a)   (b) 

Figure 2.13: Probability density functions (PDFs) for projected LDA classification models. PDFs 

derived from kernel density estimation of normalized FLS performance for Novices, Experts, Skilled 

trainees, Unskilled trainees, and Control during the post-test. fNIRS metrics used for classification 

are functional activation in the PFC, LMM1, and SMA. The type I error is defined as 0.05 for all 

cases. (a) Using only FLS task performance as the only metric, results show that the probability for a 

Novice surgeon being misclassified as an Expert surgeon is 53% (MCE2) and the probability that a 

Novice surgeon is misclassified as an Expert surgeon is 61% (MCE1). (b) fNIRS based classification 

results show that the probability for a Novice surgeon being misclassified as an Expert surgeon is 

4.4% (MCE2) and the probability that a Novice surgeon is misclassified as an Expert surgeon is 4.3% 

(MCE1). Similarly, Control subjects are classified against Unskilled and Skilled subjects. 

2.3.3 Optical neuroimaging assessment of surgical skill level during training 

Beyond determining skill levels of individuals compared to established groups, one 

key challenge in bimanual skill assessment and in laparoscopic surgery is the evaluation 

of bimanual motor skill acquisition during training. We applied our neuroimaging 

methodology to the FLS pattern cutting task over an eleven-day training period for 

inexperienced medical students. Based on the established FLS metrics currently employed 

in the field, the enrolled medical student population was divided into Skilled and Unskilled 

trainees at the completion of the training program as previously shown in Figure 2.7. 

Additionally, five medical students with no prior experience in laparoscopic surgery were 

recruited as the Control group that underwent no training. Figure 2.14 shows a visual 

spatial map conveying the average cortical activation of all Skilled trainees or Unskilled 

trainees while performing the post-test (i.e. simulated certification exam). Like Expert vs 

Novice surgeons as shown in Figure 2.9, Skilled trainees exhibit increased cortical 

activation in the left medial M1 and SMA and decreased PFC activation when compared 

to Unskilled trainees upon training completion and after a two-week break. 
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Figure 2.14: Differentiation and classification of motor skill between Control, Skilled, and Unskilled 

trainees. (a) Spatial maps of average functional activation for all subjects in each respective group 

during the FLS training task on the post-test day. 

 

To provide a more global view of the training outcome, we present the descriptive 

statistics of functional activation between untrained Control students and all trained FLS 

students for pre-test (Day1) and post-test (final day after two-week break period) with 

respect to different brain regions in Figure 2.15. Results indicate that there are no 

significant differences between the Control and all training students (Skilled and Unskilled 

trainees) at the onset of the training program (p>0.05). However, at the completion of the 

training and after a two weeks break period, both Skilled and Unskilled trainees exhibit a 

significantly lower functional activation in the left lateral and right lateral PFC compared 

to the untrained Control students (p<0.05). Furthermore, trained FLS students have 

significantly higher left medial M1 and SMA activation than untrained Control students 

during the post-test (p<0.05). These results reinforce the findings of the previous section 

regarding functional activation differences between Expert and Novice surgeons. To 

further stress the fact that our neuroimaging modality enables to provide a more granular 

view of training outcomes, we computed the MCEs for the three populations involved in 

this surgical training study (Control, Skilled and Unskilled trainees). 
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Figure 2.15: Average changes in hemoglobin concentration during stimulus duration with respect to 

specific brain regions for untrained Control subjects (orange) and all FLS training students (black). 

Two sample t-tests were used for statistical differentiation (n.s. not significant, *p<0.05). Type I error 

is defined as 0.05 for all cases. 

Figure 2.16 and Figure 2.17 report on the MCEs for each potential combination of 

medical student populations at different stages or end points of training. These MCEs were 

computed using the combined PFC, LMM1 and SMA brain functional optical 

measurements. The longitudinal MCEs of pretest populations versus odd days of training 

indicate that at the onset of the training, the populations could not be distinguished as 

reported by large inter-group misclassification errors, as shown in Figure 2.16.  

However, after day 7, the Skilled trainee population demonstrated a significantly 

different neuroimaging distributed response compared to the first day of training, as 

demonstrated by very low intra-group misclassification errors. Conversely, the Unskilled 

trainee population did not exhibit such marked trends. Even during the final training day 

(day 11), poor intra-group misclassification errors were observed for the Unskilled trainee 

population (MCE12 =24% and MCE21 = 47%). In contrast, Skilled trainees on the final 

training day were completely classified from Skilled trainees on the pre-test, with MCE12 

= 0% and MCE21 = 0%. 
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Figure 2.16: Inter and intra-group misclassification errors for each subject population (Control, 

Skilled and Unskilled trainees) with respect to training days. MCE12 and MCE21 values significantly 

decrease below 5% when classifying pre-test Skilled and Unskilled trainees on the final training day. 

Furthermore, misclassification errors are also low when classifying Skilled and Unskilled trainees on 

the final training day, along with Skilled trainees and untrained Control subjects. 

  

Similar results were observed when looking at the same intra-group misclassifications 

between the pre-test and post-test conditions, as shown in Figure 2.17. Classification 

continues to remain poor for Unskilled trainees when comparing this population from the 

pre-test and the post-test, with MCE12 = 58% and MCE21 = 80%. Yet, Skilled trainees 

during the pre-test are successfully classified from Skilled trainees during the post-test, 

with MCE12 = 10% and MCE21 = 11%. While the Unskilled and Skilled trainee inter–

groups were successfully classified at the end of the training session compared to the pre-

test, the two populations did exhibit some intra-group overlap in their associated 

probability density function during the post-test. Of importance, both trainee populations 

did not exhibit marked differences between the final training day and post-test 

measurements as indicated by relatively high MCEs. Classification of Skilled trainees and 

Control subjects during the post-test also yielded in very low misclassification errors, 

whereas classification of Unskilled trainees and Control subjects still yielded in high 

misclassification errors, as shown in further detail in Figure 2.18. These cross-validated 

classification methods show that cortical activation has significantly changed for Skilled 

trainees during the post-test when compared to Skilled trainees on the pre-test or untrained 

Control subjects whereas Unskilled trainees do not exhibit such a marked trend.  

 

 

 

 

M

M
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Figure 2.17: Misclassification errors are reported for each combination of training groups (Control, 

Skilled, and Unskilled trainees) with respect to pre-test, post-test, and final training days. MCEs are 

substantially low when classifying Skilled trainees and Control subjects along with inter-Skilled 

trainee group classification. Unskilled trainees, however, showed high misclassification errors even 

when compared to Unskilled trainees and Control subjects during the post-test. As a measure of skill 

retention, classification models were also applied for all subject groups from the final training day to 

the post-test.  

 

(a)   (b) 

Figure 2.18: (a) The probability that an untrained Control subject is misclassified as an Unskilled 

trainee is 46% (MCE12) and the probability that an Unskilled trainee is misclassified as a Control is 

50% (MCE21). (b) Conversely, the probability that a Control is misclassified as a Skilled trainee is 

16% (MCE12). Whereas the probability that a Skilled trainee is misclassified as a Control is 9.5% 

(MCE21). 

2.3.4 Classification of subjects with varying surgical expertise levels 

For our neuroimaging based approach for motor skill differentiation to be formative, 

it is important to validate the classification models across all subject populations, 

especially since the studies associated with assessment of established skill levels and FLS 

training were performed independently in two different institutions. The subject 

population represents the full spectrum of laparoscopic surgical expertise, from Novices 
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to certified attending surgeons, including Skilled and Unskilled medical student trainees. 

Regarding the number of procedures and associated level of expertise (at the completion 

of the training protocol), it is expected that the distribution in terms of surgical skills levels, 

from more proficient to less proficient is distributed as follow at the group level: Expert 

surgeons, Skilled trainees, Unskilled trainees, Novice surgeons, and Control.  

 

Figure 2.19 shows the cross-validated classification model results comparing all 

subject population groups with varying expertise levels. Each box corresponds to a single 

trial for each expertise group, as shown via different colored borders. Shaded regions 

within each box indicate the MCE if that trial is removed from the classification model. 

For example, the first trial in cross-validation results for classifying Expert surgeons from 

Skilled trainees shows a MCE of 0%, as indicated by a white shade. However, the 29th 

sample in the classification model, or the third trial in the Skilled trainee group, shows a 

MCE of 89% when removed from the classification model. The latter is an indication that 

the LDA classification model fails to reliably classify Experts and Skilled trainees if the 

third sample in the Skilled trainee group is removed.  

 

 

Figure 2.19: Cross-validation results for classification across all subjects with varying degree of motor 

skills. Each box represents one trial per expertise group during the post-test, where the shaded regions 

indicate the MCE if that given trial is removed from the classification model. Cross-validation results 

with their respective ratio of samples that are below misclassification error rates of 5% for Expert 

surgeons vs Skilled trainees (28/35 samples), Expert surgeons vs Unskilled trainees (29/ 38), Expert vs 

Novice surgeons (43/43), Expert surgeons vs untrained Control subjects (34/38), Skilled trainees vs 

Unskilled trainees (15/21), Skilled trainees vs Novice surgeons (24/26), Skilled trainees vs untrained 

Control subjects (18/21), Unskilled trainees vs Novice surgeons (16/29 samples), Unskilled trainees vs 

untrained Control subjects (11/24), and finally Novice surgeons vs untrained Control subjects (9/29). 
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2.4 Discussion 

While there have been extensive efforts in the surgical community to confirm training 

effectiveness and validation of the FLS program [18], [20]–[23], the surgical skill scoring 

component has received little attention and has garnered criticisms, such as subjectivity in 

scoring, inconsistencies in FLS score interpretations, and no correlation of patient injury 

reduction due to FLS certification [18], [22], [34], [54]–[57]. Despite the lack of rigorous 

evaluation of the FLS scoring methodology, the program has become the de-facto 

evaluation method for accreditation of skills required for general surgery [55]. Given the 

high-stakes nature of surgical assessment in the FLS program and its implications on 

training future surgeons, there is a current gap in the rigorous validation of FLS scores as 

a robust and objective methodology [55]. In this regard, previous studies have broached 

the concept of non-invasive brain imaging as a means for objectively assessing surgical 

skills [60], [72]–[74]. However, they suffer from methodological limitations that are now 

well-recognized by the fNIRS community, namely the contamination of superficial tissue, 

such as scalp, dura, or pia matter, in the recorded measurements[80], [81] as shown in 

Figure 2.20. 

 

Figure 2.20: Cross-sectional diagram of infrared light propagation through cortical tissue. The short 

separation detectors are placed 8mm away from each source to ensure the backscattered light is solely 

due to superficial tissue, such as scalp, skull, dura, arachnoid, and pia matter. The large separation 

detectors are placed 3-4cm away from each source to ensure sufficient light penetration depth into 

the cortex is achieved. 
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To highlight this point, results from the Expert and Novice surgeon cohort in this 

study were reprocessed without the regression of superficial tissue data and are provided 

in Figure 2.21, Figure 2.22, and Figure 2.23. These results clearly demonstrate that 

previously reported fNIRS based metrics with the inclusion of superficial tissue responses 

can statistically differentiate surgical novices and experts [60], [73], [74], [137], [138], yet 

fail to classify subjects based on motor skill proficiency and perform as poorly as current 

surgical skill assessment metrics. In contrast, regressing shallow tissue hemodynamics 

from the optical measurements significantly reduces the false omission rate, where a 

surgical novice is mistakenly classified as an expert, to 0% whereas previous approaches 

still maintain false omission rates of 13-18%, as shown in Table 2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.21: Differentiation and classification of motor skill between Novice and Expert surgeons 

without short separation regression. (a) Average changes in hemoglobin concentration during the FLS 

task duration with respect to specific brain regions for Novice (green) and Expert (maroon) surgeons. 

Two sample t-tests were used for statistical tests (
n.s. 

not significant, 
*
p<0.05). 
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Figure 2.22: LDA classification results for FLS scores and all combinations of fNIRS metrics using 

fNIRS metrics with superficial tissue signals included. 

 

 

Figure 2.23: Leave-one-out cross-validation results show the ratio of samples that are below 

misclassification error rates of 0.05 for FLS scores and all other combinations of fNIRS metrics when 

measurements include superficial tissue signals. 

 

Table 2.2: Expert vs Novice classification results for fNIRS (with and without short separation 

regression) and FLS metrics.  

 

 

 

Weighted Quadratic 

SVM classification 

Sensitivity Specificity Positive predictive 

value (PPV) 

False omission 

rate (FOR) 

ROC – 

AUC 

FLS scores only 0.94 0.54 0.73 0.13 0.8 

Without short 

separation regression 

0.88 0.76 0.82 0.18 0.91 

With short separation 

regression 

1.00 0.88 0.93 0.00 0.99 
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Beyond improving the robustness of optical measurements sensitivity to cortical 

activations, this work is also the first to measure functional activation in a multivariate 

fashion to determine critical cortical regions that are correlated to surgical motor skill 

differentiation and classification. More specifically, this is the first report of measuring 

functional activations in the PFC, M1, and SMA cortical regions that are putatively 

associated with motor task strategy, motor task planning, and fine motor control [73], [74], 

[132], [137], [149]–[154]. Our results demonstrate that the inclusion of these cortical 

regions significantly improves the utility of fNIRS in assessing bimanual skills and can 

offer improved objective metrics over conventional FLS-based metrics currently used for 

certification in general surgery. Of importance, while using single regional readouts lead 

to enhanced population differentiation, the combination of the three above mentioned 

cortical regions provide excellent classification performances (for completeness, we also 

provide bivariate classification results using support vector machines in Figure 2.24 and 

Figure 2.25. Indeed, when combining measurements from these three brain regions, 

optical neuroimaging enables a remarkably robust classification of subjects based on their 

proven surgical skills levels, including novice, intermediate and expert skill levels. More 

precisely, our methodology allows for: (1) highly accurate classification of subjects with 

well-defined bimanual skills levels with better performance than currently employed 

metrics, (2) longitudinally assessing the acquisition of surgical skills during the FLS 

training program, and (3) performing robust classifications of populations recruited from 

multiple institutions with varying skill levels. 
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(a)   (b) 

 

(c)   (d) 

 

(e)   (f) 

Figure 2.24: Quadratic support vector machine (SVM) classification of Expert and Novice surgeons. 

(a) Unsupervised, quadratic polynomial support vector machines were used for bivariate 

classification of Expert and Novice surgeons. Quadratic support vectors outlining the decision 

boundaries are shown. (b) Receiving operating characteristic (ROC) curve showing the sensitivity vs 

specificity of SVM based classification. (c) Weights from the corresponding LDA classification of 

Expert vs Novice surgeons were used to combine the cortical activations as a single metric. (d) The 

corresponding ROC curves for the weighted fNIRS metric based classification vs traditional FLS 

scores. (e-f) Confusion matrices showing the specific results of true positive and true negative classes 

(green) along with the false positive and false negative classes (maroon). Results indicate that SVM 

based on weighted fNIRS classification show no cases of false negatives. 
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(a)   (b) 

 

(c)   (d) 

 

(e)   (f) 

Figure 2.25: Quadratic support vector machine (SVM) classification of Skilled vs Unskilled trainees. 

(a) Unsupervised, quadratic polynomial support vector machines were used for bivariate 

classification of Skilled and Unskilled trainees. Quadratic support vectors outlining the decision 

boundaries are shown. (b) Receiving operating characteristic (ROC) curve showing the sensitivity vs 

specificity of SVM based classification. (c) Weights from the corresponding LDA classification of 

Skilled vs Unskilled trainees were used to combine the cortical activations as a single metric. (d) The 

corresponding ROC curves for the weighted fNIRS metric based classification vs traditional FLS 

scores. (e-f) Confusion matrices showing the specific results of true positive and true negative classes 

(green) along with the false positive and false negative classes (red). 
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On a practical side, it is important to note that even if our methods leverage the most 

recent technical developments in the field of fNIRS, the instrumental and algorithmic 

platforms employed herein are readily available for wide-dissemination and use in surgical 

training facilities. Moreover, as more neuroscience-driven investigations focus on 

mapping distributed brain function, the positioning of the optodes (source or detector) on 

the subject scalp become increasingly challenging with extended spatial coverage. One 

key consideration is to ensure effective coupling is minimally affected by natural 

movements and not compromised by the subject’s hair. Hence, positioning of the optodes 

can be a lengthy process that is not suitable for professional environments that are time-

constrained either by cost or throughput considerations. In this regard, our study identifies 

that the PFC, SMA and left medial M1 regions are sufficient for accurately assessing 

bimanual skill-based task execution. Thus, probe placement can be completed in a short 

amount of time without any impact on task execution, both critical factors for an 

acceptance of our surgical skill assessment methodology by the surgical community.  

Beyond bimanual skills assessment and objective classification of individuals based 

on their skill levels, the work herein provides a sound foundation to further investigate the 

neurophysiology underlying bimanual skill acquisition and retention. Herein, we 

deliberately focused on reading the brain outputs as a mean to provide objective and 

quantitative measures of bimanual task execution without delving into the mechanistic 

understanding of the underlying physiology and functional connectivity. However, current 

neurophysiological knowledge supports the overall findings of our studies, namely 

increases in left medial M1 and SMA activation, and significant decreases in PFC 

activation across all groups with increasing motor task performance [60], [73], [74], [132], 

[137], [149]–[154]. It is also important to note that previous studies utilize motor tasks 

that are deliberately designed to decrease variability in studying cortical activation 

changes, such as finger tapping or simple visual or virtual based unimanual tasks. 

Conversely, the FLS task at hand is a complex bimanual task that involves visuospatial 

coordination, varying degrees of synchronicity between hands, motion frequency and 

range, and exerted forces on the surgical tools for task completion. Consequently, it is not 

feasible to ensure that each session replicates the same conditions and hence, the same 
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cortical responses. Moreover, the cortical activations and interactions associated with the 

task planning and execution are dynamic by nature from expected explicit control in the 

early stages of learning to more implicit or automatic control in the later stages of motor 

learning. Thus, mapping the cortical networks and their dynamical changes associated 

with task execution and skill acquisition should be the next step.  

Indeed, there is currently great interest in investigating dynamic functional connectivity 

(DFC) in neuroscience. Typically, DFC studies are conducted using fMRI, which is not 

appropriate for protocols requiring supine positions and/or non-elicited task execution. 

Recent studies have demonstrated that fNIRS is well positioned in such scenarios [155]–

[157]. We foresee that implementing such approaches in the context of bimanual skill 

assessment can lead to refined skill level assessment metrics as well as potentially provide 

predictive models of skill acquisition. For instance, composite cognitive metrics, possibly 

obtained by weighting regional cortical measurements using the LDA weights for best 

classification between Skilled and Unskilled trainees, could be central to developing 

tailored surgical training program for optimal skill acquisition and retention assessment, 

as shown in Figure 2.25. Furthermore, these methodologies can be easily applied to other 

fields including rehabilitation, brain computer interfaces (BCI), robotics, stroke and 

rehabilitation therapy [158]–[160]. In summary, we believe this non-invasive imaging 

approach for objective quantification for complex bimanual motor skills will bring about 

a paradigm change in broad applications such as surgical certification and assessment, 

aviation training, and motor skill rehabilitation and therapy. 

2.5 Summary 

In this chapter, we propose fNIRS as a non-invasive imaging method to quantify 

bimanual motor skills and show evidence for two major conclusions. First, we show that 

functional activation decreases in the PFC and increases in the left medial M1 and SMA 

when motor skill levels increase. Secondly, fNIRS measurements of combined cortical 

activation in the PFC, M1, and SMA are sufficient to successfully classify participants 

based on varying degrees of motor skills levels with significantly lower misclassification 

errors when compared to established FLS metrics. 
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3. Objective assessment of surgical skill transfer using non-invasive 

brain imaging 

3.1 Overview 

With mounting concerns about patient safety and the need to have objective measures 

of surgical technical competence, simulation as a means of surgical training and 

certification is rapidly gaining ground [161]. The Fundamentals of Laparoscopic Surgery 

(FLS), which employs a box-trainer, and the Fundamentals of Endoscopic Surgery (FES) 

with  a virtual reality-based simulator, have been recently adopted by the American Board 

of Surgery as pre-requisites for certification in general surgery [16], [17], [20], [23], 

[162]–[166]. However, prior to acceptance, each simulator, real or virtual, must undergo 

extensive validation to demonstrate effectiveness. One critical measure of simulator 

effectiveness is the evidence of successful transfer of technical skills from the simulation 

environment to the clinical environment [161], [167], [168]. While metrics for technical 

skills assessment may vary, the current standard in assessing successful transfer of skills 

from the simulation environment to a clinical setting is direct observations by an expert 

clinician [1] using a checklist such as the Objective Structured Assessment of Technical 

Skills (OSATS) or Global Operative Assessment of Laparoscopic Surgery (GOALS) [1]–

[3]. Alternative metrics such as task completion time have also been reported for assessing 

technical skill transfer [169]. Despite the current widespread usage of these generalized 

rating or completion time based assessments, there are significant drawbacks to these 

methods that include personnel resource costs, poor interrater reliability between proctors, 

and poor correlation of learned technical skills from the simulator to outcomes in the 

operating room [7], [52], [169]. These limitations necessitate a need for more objective 

and analytical methods to assess surgical skill transfer [49], [51]. 

 

Portions of this chapter previously appeared as:  

A. Nemani, W. Ahn, C. Cooper, S. Schwaitzberg, and S. De, “Convergent validation and transfer of learning 

studies of a virtual reality-based pattern cutting simulator,” Surg. Endosc., to be published. doi: 

10.1007/s00464-017-5802-8. 

A. Nemani, C. Cooper, X. Intes, S. De, and S. D. Schwaitzberg, “Noninvasive brain imaging demonstrates 

that surgical skills transfer from training simulators to ex-vivo models,” J. Am. Coll. Surg., vol. 225, no. 4, 

pp. 22, Oct. 2017. 
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A promising technique that is objective in determining surgical motor skills is non-

invasive brain imaging. Among all the non-invasive brain imaging methods currently 

available, functional near-infrared spectroscopy (fNIRS) offers the unique features to be 

portable, non-invasive, non-obtrusive to performing the surgical task, fast and relatively 

inexpensive [137], [170]. Investigators have used fNIRS to study brain activation 

responses between surgical experts and novices during the performance of surgical 

training tasks by measuring the fluctuations of hemodynamics signals, namely changes in 

concentration of oxy- (HbO) and deoxy- (HbR) hemoglobin [60], [72]–[74], [76], [77], 

[171]. However, these studies are limited in scope as they are subject to signal 

contamination from superficial tissue, and show no evidence of surgical skill transfer to 

more clinically relevant environments. 

The purpose of this study is to determine if fNIRS can accurately assess motor skill 

transfer from simulation to ex-vivo environments for trained and untrained subjects as they 

perform an established surgical training task. We hypothesize that fNIRS based metrics 

can classify different levels of surgical motor skill transfer with more accuracy than 

established methods. To test this hypothesis, subjects trained on a physical or virtual 

surgical simulator where subjects practiced a surgical training task and subsequently 

performed a surgical transfer task post-training. The physical simulator utilized in this 

study is the official FLS box trainer, whereas the virtual trainer is the Virtual Basic 

Laparoscopic Skills Trainer (VBLaST), which is a validated virtual simulator that 

simulates the five FLS task modules in real time [26], [34]–[37], [54]. In order to measure 

cortical activation changes during the transfer task, we measure functional activation 

specifically in the prefrontal cortex (PFC), primary motor cortex (M1) and the 

supplementary motor area (SMA), as these cortical regions are directly involved in fine 

motor skill learning, planning, and execution [60], [82], [134], [136], [140], [160].  

Multivariate statistical approaches were then used to objectively differentiate and classify 

subjects that exhibit successful motor skill transfer. 
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3.2 Methods 

The study was approved by the Institutional Review Board of University at Buffalo 

and Rensselaer Polytechnic Institute. 

3.2.1 Subject recruitment 

Prior to subject recruitment, we performed an a priori analysis according to the Mann-

Whitney U test to determine the minimum number of subjects required for the FLS 

training group, VBLaST training group, and the control group. Using pilot data, we 

estimated conservative effect sizes for the FLS and VBLaST groups and show that d = 

5.67 and d = 2.57, respectively. Based on these effect sizes, a 95% confidence interval, 

and a minimum power of 0.80, we determined that a minimum of four subjects are required 

for the FLS training group, three subjects are required for the VBLaST training group, and 

four subjects are required for the control. Consequently, we recruited seven subjects for 

the FLS training group, six subjects for the VBLaST training group, and five subjects for 

the control group. To eliminate any bias due to handedness, all the recruited subjects had 

no prior skills in laparoscopic surgery and were right handed. Subjects were monetarily 

compensated for their participation. The statistical software G*Power was used to 

determine the effect sizes and the minimum number of subjects required for this 

study[141].  

3.2.2 Simulation hardware 

Two different simulators were used over the course of this learning curve study. The 

FLS group trained on a standard SAGES certified FLS box trainer with the official 

supplementary materials to administer the pattern cutting task. The VBLaST group trained 

on the VBLaST system, specifically on the pattern cutting module. The VBLaST system 

consists of two major components: hardware interface, and the simulation software suite. 

The hardware interface utilizes two PHANTOM Omni haptic devices (Geomagic, 

Morrisville, North Carolina), connected to appropriate surgical tool interfaces, that 

provide positional tracking and real-time force feedback in the virtual environment. The 

simulation software uses custom developed algorithms and software to simulate tool to 
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cloth interactions in the virtual environment. Figure 3.1 displays both the FLS box trainer 

and the VBLaST simulator. 

 

Figure 3.1: FLS and VBLaST simulators. The physical FLS pattern cutting (PC) box trainer (left) 

and the VBLaST PC simulator (right) used in this study [54].  

3.2.3 Study design, fNIRS processing, and statistical methods 

Information regarding the study design, fNIRS hardware and processing, and 

statistical methods for this chapter have been previously discussed in section 2.2.  

3.2.4 Learning curve and task retention study design 

Recruited subjects were split into three groups: FLS training group, VBLaST training 

group, and control group with no training. All the subjects were given standardized 

instructions on how to successfully complete the pattern cutting task for the FLS and 

VBLaST simulators. The untrained control group performed three FLS trials and three 

VBLaST trials on the first day. The control group then performed three FLS trials and 

three VBLaST trials as part of the final task retention day without undergoing any 

laparoscopic skills training. The FLS and VBLaST training groups were instructed to 

complete up to 10 trials per day for twelve consecutive days on each group’s respective 

simulator. Following twelve days of training, each group was instructed to wait two weeks 

without undergoing any laparoscopic training before performing three FLS and three 

VBLaST trials each as part of the final task retention day. A schematic outlining the study 

design is shown in Figure 3.2. 
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Figure 3.2: Schematic illustrating the learning curve study design. Two training groups, VBLaST 

(blue) and FLS (magenta), undergo a training period whereas the control group (green) only 

perform the baseline test (Day 1), retention, and transfer task tests. 

3.2.5 Transfer task study design 

Following the task retention trials, each subject was asked to perform a FLS pattern 

cutting task on ex-vivo cadaveric peritoneal tissue to simulate motor skill transfer from the 

simulation environment to ex-vivo tissue models. The transfer task consisted of replicating 

the FLS pattern cut task on marked excised cadaveric abdominal tissue samples. The 

official FLS pattern cutting gauze pads were used as a stencil to draw circles on ex-vivo 

samples to ensure that all the diameters for marked samples remain the same for each 

sample. Using a standardized set of instructions, the subjects were told to resect the 

marked peritoneal tissue as accurately and as quickly as possible without damaging the 

underlying fascia or muscle tissue. Each tissue sample was photographed before and after 

the completion of the transfer task. Figure 2 shows sample images of before and after the 

transfer task completion for an example subject. 



 

 67 

  

(a)    (b) 

Figure 3.3: Pattern cutting transfer task ex-vivo sample. (a) Ex-vivo peritoneum sample prior to 

transfer task completion for FLS trained subject 3. (b) Completed pattern cutting transfer task for 

FLS trained subject 3 with the pattern cutting task replicated and the marked peritoneal tissue 

resected [54]. 

3.2.6 Task performance metrics 

The proprietary FLS scoring metrics for the pattern cutting task was used to manually 

score each trial for each subject [16]. Each FLS pattern cutting trial completion time was 

subjectively recorded with an accuracy of ±1 second. FLS scoring metrics were obtained 

from the FLS committee under a non-disclosure agreement, and hence its details cannot 

be reproduced in this paper. The VBLaST task performance metric reproduces the same 

undisclosed FLS scoring formulation in the automated VR environment[37]. The FLS and 

VBLaST pattern cutting performance scores were used as outcomes measure for the 

learning curve and task retention tests. Since video recording was not allowed according 

to institute policies at the gross anatomy lab, the performance metric for the ex-vivo based 

transfer task was completion time. Completion time consisted of the total time (minutes) 

required to completely resect the circle-marked peritoneal tissue from the tissue sample. 

Each transfer task trial’s completion time was subjectively recorded with an accuracy of 

±1 second.  

3.3 Results 

3.3.1 FLS and VBLaST simulator performance learning curves 

Figure 3.4 shows the FLS pattern cutting performance scores, with respect to training 

days, for the FLS training and control groups. Results show that there are no significant 
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differences between the FLS training group and the control group for the first day of 

training. FLS pattern cutting retention task scores show that both the FLS trained (223.5 

± 18) and VBLaST trained (109.6 ± 26.8) groups significantly outperformed the untrained 

control group (81.5 ± 25, p <0.05).  

 

 

Figure 3.4: FLS pattern cutting performance are shown with respect to training day. FLS training 

students (magenta) are compared to untrained control students (green). FLS pattern cutting task 

retention scores are shown for trained FLS students (magenta), untrained control subjects (green), 

and VBLaST trained subjects (blue). Mann-Whitney U tests were used to statistically differentiate the 

control and FLS training groups (n.s. not significant, *p<0.05). 

Figure 3.5 shows the VBLaST pattern cutting performance scores, with respect to 

training days, for the VBLaST training and control groups. Results indicate that there is 

no significant differences between the VBLaST training group and the control group for 

the first day of training. However, VBLaST pattern cutting retention task scores indicate 

that both the VBAST trained (209.4 ± 21) and the FLS trained (175.2 ± 26.3) significantly 

outperformed the untrained control group (155 ± 21.2). 
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Figure 3.5: VBLaST pattern cutting performance are shown with respect to training day. VBLaST 

training students (blue) are compared to untrained control students (green). VBLaST pattern cutting 

task retention scores are shown for trained VBLaST students (blue), untrained control subjects 

(green), and FLS trained subjects (magenta). Mann-Whitney U tests were used to statistically 

differentiate the control and FLS training groups (n.s. not significant, *p<0.05). 

 

Figure 2.7, as shown previously, details the CUSUM learning curve results for subjects 

trained in the FLS simulator. Three subjects, FLS2, FLS3, and FLS5, passed the 

acceptable failure rate of 5% (H0) over the course of the twelve day training period. 

Specifically, FLS2, FLS3, and FLS5 subjects passed the acceptable failure rate at trials 

71, 85, and 85, respectively. Figure 3.6 shows the CUSUM learning curve results for 

subjects training in the VBLaST simulator where four subjects, VBLaST1, VBLaST4, 

VBLaST5, and VBLaST6 all passed the acceptable failure rate of 5% (H0) over the course 

of the training period. Specfically, the four subejcts VBLaST1, VBLaST4, VBLaST5, and 

VBLaST6 passed the acceptable failure rate at trials 57, 29, 29, and 29, respectively. 
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Figure 3.6: CUSUM scores for trained FLS and VBLaST groups. CUSUM scores for each subject 

with respect to numbe of trials. The threshold score to be considered a senior in the pattern cutting 

task is 63[16]. (a) CUSUM scores indicate that three subjects (FLS2, FLS3, FLS5) achieved the level 

of senior during the FLS training period. (b) CUSUM scores indicate that four subjects (VBLaST1, 

VBLaST4 – 6) achieved the level of senior during the VBLaST training period. 

3.3.2 Differentiation and classification of motor skill transfer based on 

traditional task performance 

To investigate whether trained subjects significantly outperform untrained subjects in 

the ex-vivo environment, first we report transfer task completion times for trained FLS, 

trained VBLaST, and untrained control subjects. As shown in Figure 3.7, results indicate 

that both the trained FLS (7.9±3.3 min) and trained VBLAST (12.2±1.8 min) groups 

completed the transfer task significantly faster than the untrained control group (18.3±3.1 

min, p<0.05). While results show that transfer task time can statistically differentiate 

trained and untrained subjects during a transfer task, they do not address the accuracy of 

differentiation.  
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Figure 3.7: Transfer task completion times for the trained FLS, untrained control, and trained 

VBLaST subjects (*p<0.05). 

 

In this context, LDA based classification was used to classify trained and untrained 

subjects based on completion time.  Figure 3.8 shows that classification based on transfer 

task completion time of trained FLS and untrained control subjects is poor, as shown by 

high MCEs (MCE1 = 20%, MCE2 = 14%). These results indicate that a trained FLS student 

has a 20% probability of being misclassified as a control subject and an untrained control 

subject has a 14% probability of misclassified as a FLS trained subjects. Cross-validation 

results, as seen in Figure 3.8, show that 10/12 or 83% of the samples have MCEs less than 

5%, indicating that the classification model is valid for potentially future datasets.  

 

(a)    (b) 

Figure 3.8: (a) LDA classification of trained FLS and control subjects during the transfer task based 

on completion times and (b) corresponding crossvalidation results. 
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The same classification approach was applied for the virtual simulator trained 

(VBLaST) subjects vs untrained control subjects as shown in Figure 3.9. Once again, 

subject classification based on transfer task completion time is poor, indicated by high 

MCEs (MCE1 = 20%, MCE2 = 41%). Furthermore, cross validation results show that 8/11 

or 72% of the samples have MCEs less that 5%, as shown in Figure 3.9. 

 

(a)    (b) 

Figure 3.9: (a) LDA classification of trained VBLaST and control subjects during the transfer task 

based on completion times and (b) corresponding crossvalidation results. 

3.3.3 Neuroimaging-based metrics for differentiation and classification of motor 

skill transfer 

Due to high misclassification errors encountered in assessing transfer task 

performance based on task time, we propose subject classification based on fNIRS 

metrics. Prior to classification, we determine if fNIRS is sensitive to changes in cortical 

activation during the transfer task for trained and untrained subjects, specifically in the 

prefrontal cortex (PFC), left medial M1, and the SMA. Results indicate that all simulator 

trained subjects show no significant differences in all PFC cortical regions when compared 

to control subjects (p>0.05). However, both FLS and VBLaST simulator trained subjects 

have signficiantly higher functional activation in the left medial M1 (0.64 ± 0.54 and 0.44 

± 0.18 ∆HbO2 conc. µM*mm, respectively) compared to untrained control subjects (-0.44 

± 0.72 ∆HbO2 conc. µM*mm, p<0.05). Furthermore, both FLS and VBLaST trained 

subjects also showed significant increases in functional activation in the SMA (0.42 ± 0.56 

and 0.74 ± 0.47 ∆HbO2 conc. µM*mm, respectively) when compared to untrained control 
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subjects (-0.08 ± 0.22 ∆HbO2 conc. µM*mm, p<0.05). These results are summarized in 

Figure 3.10. 

 

Figure 3.10: Changs in cortical activation during the transfer task with respect to cortical regions. 

Average changes in hemoglobin (ΔHbO2) concentration as a measure of functional activation with 

respect to different cortical regions for FLS trained subjects (magenta), untrained control subjects 

(cyan), and VBLaST trained subjects (black) while all subjects perform the ex-vivo transfer task. 

 

In order to compare the accuracy of subject classification based on transfer task 

completion time or fNIRS based metrics, several combinations of metrics are used for the 

classification models. These combinations include transfer task performance time only, 

PFC only, left medial M1 only, SMA only, left medial M1 + SMA, PFC + left medial M1, 

PFC + SMA, and PFC + left medial M1 + SMA. Figure 3.11 shows the relative MCEs for 

various combinations of performance and fNIRS metrics to classify FLS trained subjects 

from untrained control subjects. The fNIRS metrics combination of PFC + LMM1 + SMA 

used for the FLS classification model yields very low misclassfication errors (MCE1 = 

2.2%, MCE2 = 2.7%). Similarly, the fNIRS metrics combination of PFC + LMM1 + SMA 

used for the VBLaST classification model yields very low misclassfication errors (MCE1 

= 8.9%, MCE2 = 9.1%), as shown in Figure 3.12. Figure 3.13 shows the cross-validation 

results of various classification models to classify trained FLS or VBLaST subjects with 

untrained control subjects. FLS trained vs control subjects classification based on transfer 

performance scores and PFC + LMM1 + SMA combinations yield results where 83% of 

the samples have misclassification errors less than 0.05. In a similar fashion, VBLaST 
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trained vs control subjects classfication models show that the transfer task performance 

score and PFC + LMM1 + SMA metric combinations yield in 72% of the samples with 

misclassification errors less than 0.05. 

 

Figure 3.11: The cumulative set of MCE1 and MCE2 for all combinations of fNIRS metrics and the 

transfer task completion time to classify FLS trained and control subjects. 

 

Figure 3.12: The cumulative set of MCE1 and MCE2 for all combinations of fNIRS and transfer task 

metrics to classify VBLaST trained and control subjects. 
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Figure 3.13: Leave-one-out crossvalidation results indicate the misclassification errors for each 

sample treated as an independent sample for the LDA model using all combinations of fNIRs and 

transfer task metrics, where the percent of samples that have MCE below 0.05 for each possible metric 

combincation are shown. 

3.4 Discussion 

Accurate and objective assessment of surgical skills transfer from simulation 

environments to clinical settings is vital in determining the effectiveness of surgical 

training. Current standards utilizing rating checklists or task completion time metrics are 

limited in reliability, when objectively determining motor skill transfer to clinical 

environments [7], [24], [52], [169], [172]. For the first time, we present evidence that a 

neuroimaging-based approach provides objective assessment of surgical skill transfer 

from simulation to clinically relevant environments. The results are independent of 

whether the simulated task was in a physical or a virtual simulator and have been cross-

validated to be robust in classifying trained and untrained subjects. 

Currently, only task performance scores are used to determine surgical motor skill 

performance on the FLS and VBLaST trainers. Studies have shown that other measure 

such as kinematic metrics can also be used as effective measure for assessing surgical skill 

[15], [173]. However, these metrics focus on the outcomes of task performance instead of 

assessing the underlying neurological responses to fine motor skills. OUR Neuroimaging 

based approach provides metrics that can be incorporated into surgical simulator can also 

provide objective measures of motor skill performance by directly measuring cortical 

activation during a given task. 
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Another limitation is the usage of CUSUM scores to objectively measure learning 

curve outcomes for longitudinal studies. The CUSUM method utilizes a threshold that 

assigns a binary value of “success” or “failure” trials depending on whether the threshold 

condition is met. However, many learning curve rates are often nonlinear, and this 

nonlinearity is not captured in the CUSUM method. Moreover, CUSUM scores utilize 

arbitrary threshold values that may not directly translate from one simulation environment 

to another. Traditionally, transfer tasks have been performed on live patients or animal 

models to show transfer of laparoscopic motor skills from the simulation environment to 

clinical environments[40], [162], [174], [175]. Due to the complexity and variability of 

in-vivo clinical environments, it is often difficult to standardize the transfer task for each 

subject. Several of these limitations are addressed by our neuroimaging approach by 

provide objective assessments of surgical motor skill transfer that are independent from 

task performance metrics.  

It is important to note that the defacto metric used in numerous validation studies to 

show the surgical skill transfer is performance time [169]. While the results in our study 

also corroborate the notion that decreases in task performance time are features of expert 

surgical skills, utilizing this metric alone leads to inconsistencies in literature [24], [169], 

[176], [177]. This point is further supported by our classification models where task 

performance time metrics present 20% - 41% misclassification errors indicating a lack of 

robustness. A univariate metric, such as task performance time,  alone may not be an 

indication of the quality of the task performance [169], [176]. Unfortunately, measures for 

task quality are not standardized for simulation paradigms and are often subjective in 

nature, prompting a need for alternative methods such as our neuroimaging based 

approach [7], [52], [169], [176].  

Using fNIRS as a means to measure functional brain activation in real-time, we have 

shown that FLS and VBLaST trained subjects show significant increases in activation in 

the left medial M1 and SMA, however no significant differences in the PFC. These regions 

have been deliberately chosen due to their influence on motor task planning, execution, 

and fine motor control for complex motor tasks and their critical role in motor skill 

learning [82], [87], [92]–[94], [139], [140]. Specifically, the PFC is associated with motor 

strategy and the early stages of motor skill learning. The M1 and SMA are associated with 
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execution and fine motor control and show increased activation during the later stages of 

motor skill learning as an indication of procurement of fine motor skills. Our results are 

consistent with literature findings that indicate that subjects with fine motor skills in 

complex motor tasks exhibit higher M1 and SMA activation, particularly for bimanual 

motor tasks [136], [158], [160]. Furthermore, since all the subjects are right handed, 

majority of the fine motor manipulations employed during the pattern cutting task is via 

the right hand. Since right handed motor tasks evoke contralateral activation in the left 

hemisphere of the cortex, we expect increased activity in the left medial M1 [82], [87], 

[92]–[94], [139], [140]. Although we do not report any significant cortical activation 

differences between the untrained and trained subjects in the PFC during the transfer task, 

this is an expected result since all the subjects are expected to recruit the PFC to develop 

a motor strategy for this unfamiliar task.  

Using well-established neurophysiological principles, our work integrates most recent 

advances in neuroimaging and assessment of surgical competence during transfer of skills 

from a simulation environment. This work also expands on several technical 

improvements over previous work involving fNIRS with applications in surgical skill 

differentiation. Since fNIRS signals are heavily contaminated by superficial tissue, 

techniques such as dense spatial sampling via diffuse optical tomography and short 

separation channel regression can be used to further isolate cortical brain activation signals 

from superficial tissue [80], [81], [178]. Such approaches provide more robust estimations 

of the underlying hemodynamic responses associated with surgical tasks, which were not 

reported in previous fNIRS surgical studies. Furthermore, we utilize a multivariate 

approach to statistically differentiate and classify subjects based on surgical motor skill 

levels to accurately determine motor skill transfer. Since no single metric itself, such as 

task completion time, can demonstrate surgical skill proficiency between trained and 

untrained subjects [169], [176], our fNIRS metrics based multivariate approach on 

classifying trained and untrained subjects brings robustness in surgical skill transfer 

assessment. 
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3.5 Summary 

In this chapter, fNIRS is proposed as a non-invasive real-time imaging method to 

successfully differentiate and classify surgical motor skills that transfer from simulation 

to ex-vivo environments. First, we show that two brain regions, the left medial M1 and the 

SMA, have significantly increased cortical activation for subjects that have trained on 

physical and virtual surgical simulators when compared to untrained subjects. We also 

show that fNIRS based metrics have significantly lower misclassification errors than 

simple metrics, such as task completion time, when used to classify trained and untrained 

subjects in assessing surgical motor skill transfer. fNIRS based approaches to objectively 

quantify motor skill transfer may be a paradigm change for the surgical community in 

determining the effectiveness of surgical trainers in training technical skills that ultimately 

transfer to the operating room. 
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4. Brain connectivity analysis for surgical skill assessment in physical 

and virtual surgical simulators 

4.1 Overview 

Surgical training has traditionally followed an apprenticeship based model where 

technical skills are taught in the operating room [161], [179]. However, this approach is 

often costly, time consuming, and presents significant negative patient outcomes due to 

the inexperience of the trainee [161], [179]. Furthermore, with the advent of minimally 

invasive surgery and laparoscopic procedures, programs such as the Fundamentals of 

Laparoscopic Surgery (FLS) and the Fundamentals of Endoscopic Surgery (FES) have 

been adopted by the American Board of Surgery as accredited means for assessing 

technical surgical skills [16], [17], [20], [23], [162]–[166]. Surgical skill assessment in 

these simulator-based training methods often utilize rating scales, rudimentary 

performance metrics, or direct observation methods to rate and assess surgical task 

performance [1]–[3], [23], [55], [56], [180]. While the usage of these metrics are standard 

of practice in surgical skill training and assessment, they have been cited to have poor 

interrater reliability and poor correlation of simulator based performance metrics to 

clinical outcomes in the operating room [7], [52], [169].  

Compounding the lack of robust surgical skill assessment metrics, there is a lack of 

studies that comprehensively address the underlying neurophysiological responses to 

varying surgical motor skill levels. Recent studies have shown the potential of non-

invasive brain imaging to quantify cortical activation differences for subjects with varying 

degrees of surgical motor skills [54], [60], [72], [74], [137], [138]. While these studies 

have shown significant differences in functional activation in the prefrontal cortex (PFC), 

primary motor cortex (M1) and the supplementary motor area (SMA) due to their direct 

involvement in motor skill learning [54], [60], [72]–[74], [101], [134]–[138], [140], [160], 

the underlying functional connectivity between cortical regions that are correlated to 

surgical motor skills has not been studied.  

 

Portions of this chapter have been submitted to: 

A. Nemani, X. Intes, and S. De, “Functional brain connectivity distinguished surgical skill learning with 

surgical simulators,” submitted for publication. 
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Techniques to quantify brain functional connectivity, such as wavelet coherence (WCO) 

and wavelet phase coherence (WPCO), have been utilized in multiple fNIRS studies [155], 

[171], [181]–[186]. Since WCO and WPCO analyses can objectively quantify functional 

connectivity and strong temporal correlations by determining significantly high common 

power and phase-locked behavior between two specific cortical channels [155], [187], this 

approach can strongly address the neurophysiological knowledge gap of surgical motor 

skill learning and assessment.  

The purpose of this study is to determine whether there is significant functional 

connectivity between the PFC, the M1, and the SMA cortical regions that are correlated 

to surgical motor skill proficiency. Indeed, we hypothesize that are significant functional 

connectivity changes in these cortical regions that depend solely on surgical motor skill 

levels and are independent of task performance metrics or surgical skill assessment 

platforms, namely physical or virtual surgical simulators. To test this hypothesis, subjects 

with varying degrees of surgical motor expertise performed a complex surgical training 

task on physical and virtual simulators while undergoing fNIRS imaging in real time. To 

quantify functional connectivity between cortical regions, WCO and WPCO were 

calculated during each trial for each subject as they perform the surgical training task. 

4.2 Methods 

4.2.1 Subject recruitment 

36 subjects were recruited in this IRB approved study conducted at Massachusetts 

General Hospital and University at Buffalo. The subjects were split into two cohorts. The 

first cohort included novice and expert surgeons and the second cohort included training 

medical students. The second cohort was further split into three distinct groups: FLS 

training group, VBLaST training group, and control group. An a priori power analysis, 

based on two sample t-tests, was completed to determine the minimum number of samples 

required for both cohorts in this study. Using pilot study data and the power estimation 

software G*Power [141], we estimated a conservative effect size, d = 1.4, for the novice 

and expert surgeon cohorts. Furthermore, we estimated conservative effect sizes for the 

FLS and VBLaST training groups, d = 5.67 and d = 2.57, respectively. With a 95% 

confidence interval and a minimum power of 0.80, a minimum of 8 subjects each for the 
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expert and novice surgeon cohort group, four subjects for the FLS training group, three 

subjects for the VBLaST training group, and four subjects for the control group were 

estimated for this study.  Subject demographics are summarized in Table 4.1 and further 

details on study design is shown in section 2.2.  

 

Table 4.1: Study subject demographics and training procedures completed. 

4.2.2 Hardware, study design, and fNIRS processing 

Information regarding the hardware, study design, and fNIRS processing 

methodologies for this chapter have been previously discussed in section 2.2. The notable 

exception is digital filters were not applied to each fNIRS time series data to persevere the 

entire frequency bandwidth of each channel.  

4.2.3 Wavelet coherence and wavelet phase coherence 

To objectively quantify functional connectivity between time series from different 

cortical regions, we utilize wavelet coherence and wavelet phase coherence metrics. First, 

Cohort # of 

subjects 

Mean 

age 

Training / 

Certification 

Average # of 

laparoscopic 

procedures 

# of 

completed 

FLS pattern 

cutting trials 

# of 

completed 

VBLaST 

pattern 

cutting trials  

Expert 

surgeon 

8 35 Postgraduate 

year 4-5 or 

attending 

surgeons 

700 5 5 

Novice 

surgeon 

9 31 Postgraduate 

year 1 – 3 

60 5 5 

FLS 

training 

group 

9 25 Medical school 

year 1-4 

0 >100 0 

VBLaST 

training 

group 

8 24 Medical school 

year 1-4 

0 0 >85 

Control 5 26 Medical school 

year 1-4 

0 3 3 
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the wavelet transforms for each time series are computed using the Morlet wavelet as 

defined below[181], [183]: 
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where W(s,u) is the generated complex wavelet transform, g(t) is the input time series, 

Ψ(t) is the Morlet wavelet scaled by a s and translated in time by u, ω0 is the basic 

frequency, and i = √−1. Since wavelet scaling is sensitive to oscillations in different 

frequencies and wavelet translation shown time series spectra evolution over time, it is 

important to note that the translation from scale to frequency depends on the wavelet type 

choice [181]. Consequently, the Morlet wavelet, with a basic frequency of  ω0 = 2π, was 

chosen as it provides the best time-frequency localization [181], [188]–[191]. Using the 

wavelet transform values, the complex oscillatory time series can be computed with the 

following expression [181], [183]: 
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where k = 1, 2, and n is each time step in the entire complex time series. Using the 

transformed oscillatory time series, the wavelet coherence (WCO) as a function of 

frequency is defined below [181], [183]: 
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where w1 and w2 are complex oscillatory Morlet wavelet transforms of the first and second 

time series, N is the total number of time steps of each time series, * is the complex 

conjugate, and P1(f) and P2(f) are the wavelet power at frequency f. The time averaged 

wavelet phase coherence (WPCO) is also defined below [181], [183]: 
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where Δϕ(f,tn) is the instantaneous phase difference between two complex oscillatory time 

series. The coefficients cos Δϕ(f,tn) and cos Δϕ(f,tn) are then time averaged across the entire 

time series. The significance of these metrics is that they can objectively quantify 

correlations of two independent time series with specificity to frequency and time step 

changes[181]. A value of 0 for both WCO and WPCO indicates that two time-series are 

completely unrelated in phase changes and coherence magnitudes. A value of 1 for both 

WCO and WPCO indicates a significant linear relationship between the two time series 

and that oscillatory phase changes are significantly correlated [181], [183], [190], [192]. 

As shown in Table 4.2 below, the entire frequency bandwidth of the resulting WCO and 

WPCO vectors is split into five different intervals that are correlated to different 

physiological activities.  

Furthermore, a WCO and WPCO analysis is shown for two example fNIRS time series 

in Figure 4.1. Figure 4.1a shows two example channels, the left lateral PFC and the left 

medial M1, for one subject while performing the FLS pattern cutting task. Figure 4.1b 

shows the corresponding wavelet coherence magnitude plot for each frequency and time 

step between the two example channels. Figure 4.1c-d are the time averaged wavelet 

coherence and wavelet phase coherence magnitudes. Furthermore, the frequency intervals 

are depicted to show the specific coherence magnitudes ranges for each associated 

physiology. For example, the average WCO within the neurovascular coupling range is 

0.44 and the WPCO magnitude is 0.94. Note that only WCO and WPCO values within 

cone of influence, depicted as a shaded white line, are used for analysis due to edge effects 

that may bias the analysis. Regarding statistical tests, two tailed Mann-Whitney U tests 

were utilized within a 95% confidence interval to determine significant differences of 

WCO and WPCO metrics between populations. 
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Table 4.2: Frequency bandwidth intervals with their associated physiology [155], [181]–[183], [193]. 

Frequency 

interval 

Frequency 

range (Hz) 

Associated physiology 

I 0.6 – 2 Cardiac activity 

II 0.15 – 0.6 Respiratory activity 

III 0.05 – 0.15 Myogenic smooth muscle activity 

IV 0.0095 – 0.02 Neurovascular coupling and autonomic control in the 

cortex 

V 0.005 – 0.0095 Nitric oxide related endothelial metabolic activity 

 

 

(a)    (b)  

 

(c)    (d)  

Figure 4.1: Example wavelet coherence between two different fNIRS time series data. (a) Two time 

series data from the left lateral PFC (LPFC) and left medial M1 (LMM1) channels for a surgical 

expert during one FLS task trial (b) Wavelet coherence magnitude between the two time series data 

based on time and frequency domains. Wavelet coherence magnitude values are shown via the color 

bar. Only values within the cone of influence range, indicated by a dashed white line, are included for 

wavelet coherence power magnitude and phase coherence calcualtions. (c) Time-averaged wavelet 

coherence magnitudes and (d) wavelet phase coherence magnitudes between the two example time 

series shown in (a). 
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4.3 Results 

4.3.1 Wavelet coherence between surgical experts and novices 

To investigate significant functional connectivity differences in cortical regions 

associated with varying degrees of surgical motor skills, we report, in Figure 4.2, the WCO 

and WPCO metrics between each combination of the following cortical channels: left 

lateral prefrontal cortex (LPFC), central prefrontal cortex (CPFC), right lateral prefrontal 

cortex (RPFC), left medial primary motor cortex (LMM1), and the supplementary motor 

area (SMA). First, we compare functional connectivity differences between the expert and 

novice surgeon cohorts during the pattern cutting task for both physical (FLS) and virtual 

(VBLaST) simulators. Results indicate that WPCO values, between the CPFC and SMA 

channels in the neuro-coupling activity frequency range (IV), are significantly higher for 

experts (0.913 ± 0.125) compared to novices (0.827 ± 0.183, p = 0.007). While there are 

other cortical channels that have significant functional connectivity differences between 

experts and novices, only the CPFC – SMA channels are consistent across the physical 

FLS and virtual VBLaST simulators.  
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(a)    (b)  

 

(c)    (d)  

Figure 4.2: Wavelet coherence and wavelet phase coherence magnitude changes between experts and 

novices on physical or virtual simulators. (a-b) Wavelet coherence magnitudes and wavelet phase 

coherence magnitudes for FLS experts (red) vs novices (green) within the neurovascular coupling 

activity frequency range. (c-d) Wavelet coherence magnitudes and wavelet phase coherence 

magnitudes for VBLaST experts (purple) vs novices (blue) within the neurovascular coupling activity 

frequency range. 

4.3.2 Wavelet coherence between surgically trained and untrained subjects 

To determine functional connectivity changes with increasing surgical motor skill 

proficiency due to increased practice, we calculate WCO and WPCO metrics for both the 

FLS and VBLaST student training groups. Next, these WCO and WPCO metrics are 

compared in the CPFC and SMA channels with untrained control subjects. Figure 4.3 

shows the longitudinal functional connectivity results of the training cohort group. Figure 

4.3a shows significant WPCO differences in the neuro-coupling activity frequency range 

(IV) between untrained control students (0.735 ± 0.177) vs physical simulator trained 

students (0.960 ± 0.045, p<0.001). Similarly, Figure 4.3b also shows significant WPCO 

differences in the neuro-coupling activity frequency range between untrained control 

students (0.853 ± 0.109) vs virtual simulator trained students (0.944 ± 0.079, p = 0.0166). 
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Figure 4.3 shows a visual schematic of the functional activations in the neurovascular 

coupling frequency range for subjects within the FLS and VBLaST simulator frameworks.  

 

(a)    (b)  

Figure 4.3: Longitudinal wavelet phase coherence in neurogenic activity frequency range with 

increasing surgical skill training. WPCO magnitudes within the neurovascular coupling activity 

frequency range (V) for between the CPFC and SMA channels for untrained control subjects, trained 

FLS (a) and trained VBLaST (b) subjects as training and motor skill proficiency increases with 

training days. 

 

Figure 4.4: Functional connectivity schematics for training and untrained subjects post training on 

virtual or physical simulators. Schematic showing the functional connectivity differences, as shown 

by significant changes in WPCO in the neurogenic activity frequency ranges, between trained and 

untrained subjects. 
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4.4 Discussion 

While surgical simulators are significantly gaining ground for use in surgical skill 

training and assessments[161], the underlying neurological mechanisms or functional 

connectivity between correlated cortical regions are largely unstudied. This study 

compares the functional connectivity of cortical regions associated with fine motor skills 

for subjects with varying degrees of surgical motor skill. More specifically, WCO and 

WPCO in the neurovascular coupling frequency range (0.0095 – 0.02 Hz) between the 

CPFC and SMA channels yielded significant differences, where experts and trained 

subjects show sustained increased in functional connectivity compared to novices or 

untrained subjects.  

Functional connectivity within the neuro-coupling frequency ranges between the 

CPFC and SMA also have underlying physiological mechanisms that drive increased 

connectivity. Cerebral oscillations within the neuro-coupling frequency range are affected 

by regional cerebral blood supply. Thus when localized brain activation occurs, cerebral 

blood flow (CBF) significantly increases [155]. This concept is called functional 

hyperemia and changes constantly during the surgical task trial stimulus duration to 

maintain CBF [192], [194]. Furthermore, significant decreases in functional connectivity, 

as measured by WCO and WPCO, may also be attributed to decreased blood supply due 

to long-term imbalance of hyperemia [155], particularly for novices or subjects with 

insufficient motor skill compared to experts. Significant uniform decreases of WCO and 

WPCO in the prefrontal cortex regions for surgical novices or untrained subjects may 

indicate overall functional connectivity levels for this cohort group. Cerebral oscillations 

within the neuro-coupling frequency range may also stem from local activity that is 

responsible for contractions in vascular smooth muscles [193]. During fine motor tasks, 

particularly during complex bimanual surgical tasks, the primary motor cortex should 

maintain increases in excitation to the correlated motor neuron end effector, to ensure 

steady and sustained bimanual force production [155], [195]. Fine motor skills, 

particularly employed in this study, required bimanual coordination that significantly 

employs the primary motor cortex, leading in increased active motor units and stimulus 

coherence within neuro-coupling range. Ultimately, our results show evidence of this 
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concept where there are significant increases in WCO and WPCO for experts or surgically 

trained subjects compared to novices and untrained subjects.   

From a practicality standpoint, our neuroimaging approach utilizes the most recent 

advances in neuroimaging with a focus in functional imaging via fNIRS, such as increased 

specificity to cortical tissue due to short separation regression [80], [81]. Such approaches 

provide accurate estimations of the hemodynamics of cortical tissue during complex 

bimanual surgical tasks for both virtual and physical simulators, which have not been 

reported previously. There has also been criticism for virtual simulators that state that they 

lack the robustness in performance assessment compared to physical simulators [161]. Our 

approach to quantify functional connectivity solely based on neuroimaging based metrics 

show promise that specific markers of surgical motor skill proficiency, such as WCO and 

WPCO metrics, can be utilized for future surgical assessment and training. More 

importantly, our approach is not dependent on task performance metrics or simulation 

paradigms, which have large inconsistencies in literature due to the lack of standardization 

and robust metrics in the virtual surgical simulation field [24], [161], [176]. 

4.5 Summary 

In this chapter, functional connectivity metrics, namely WCO and WPCO, were used 

to quantify significant correlations between connectivity in specific cortical regions to 

increases in surgical motor skill proficiency. My measuring multiple channels 

corresponding to cortical regions in the PFC, M1, and SMA, fNIRS imaging shows 

evidence that increases in functional connectivity between the CPFC and the SMA are 

positively correlated to increased surgical motor skill. Furthermore, this increase in 

functional connectivity is significantly higher in surgical experts compared to novices and 

similarly in simulator trained subjects compared to untrained subjects. Note that functional 

connectivity increases between the CPFC and SMA are independent of simulation 

platform or task performance metrics.  
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5. Summary and future work 

5.1 Thesis summary 

Accurate assessment of surgical skills is becoming ever more paramount as new 

surgical techniques and procedures continue to rely on MIS techniques that are inherently 

difficult to master and embody complex bimanual tasks. Current surgical motor skill 

assessment methods, however, have severe limitations such as high subjectivity, poor 

correlations to patient outcomes, high human resource costs, and inconstancies in 

assessment methodologies. Compounding this lack of robustness in skill assessment, the 

underlying neurophysiological responses to increased surgical skill learning have not be 

studied in detail. This presents a clear need for more objective and accurate assessment 

methods for surgical motor skill levels.  

In this work, we propose fNIRS to objectively quantify surgical motor skills in real 

time and compare our approach with established assessment metrics. We show that fNIRS 

metrics can not only differentiate varying degrees of surgical motor skill proficiency, but 

also classify subjects according to motor skill levels with significantly higher accuracy 

than established metrics. More specifically, classification using multivariate metrics 

including the PFC, M1, and SMA cortical regions drastically reduce misclassification 

errors from 53 – 61% to 4.2 – 4.4% when compared to established metrics.  

In this work, we also propose fNIRS as a non-invasive real-time imaging method to 

successfully differentiate and classify surgical motor skills that transfer from simulation 

to ex-vivo environments. We present evidence that multivariate metrics from the PFC, M1, 

and SMA regions while subjects perform a surgical transfer task can significantly reduce 

misclassification errors from 14 – 41% to 2.2 – 9.1% when compared to conventional 

metrics. Our approach is significantly more accurate in classifying trained and untrained 

subjects with respect to surgical motor skill transfer than established metrics. Furthermore, 

the novelty of our approach is due to independence of task performance metrics or 

simulation environment.   

For the first time, we also evidence that functional connectivity changes are correlated 

to surgical motor skill proficiency and these connectivity changes depend on specific 

neurovascular coupling mechanisms in cortical regions and are independent of simulation 
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environments. Our study shows that surgical experts and surgically trained subjects exhibit 

significant functional activation correlations between the CPFC and SMA within the 

neurovascular coupling frequency range. These results further our understanding of 

functional neural correlates of fine motor skills associated with surgical performance and 

can be used for future training and assessment paradigms. 

This work addresses the limitations of current subjective and underdeveloped surgical 

skill assessment metrics by proposing fNIRS measures as robust and accurate means of 

significantly improving surgical skill assessment accuracy. While further studies are 

required to establish repeatability, non-invasive brain imaging approaches, using near-

infrared spectroscopy, present a paradigm change in surgical skill assessment that may 

drastically improve training efficacy for resident programs that incorporate surgical 

simulators and ultimately reduce negative patient outcomes. 

5.2 Future work 

While this work has established the usage of fNIRS metrics as robust means of 

surgical skill assessment, future research may be undertaken to further improve the 

specificity, robustness, and application of fNIRS measures for motor skill proficiency 

assessment. 

5.2.1 Expansion of cortical coverage 

The most obvious improvement is the expansion of probe measurements to other 

cortical regions that are correlated to motor skill task performance. The occipital lobe, for 

example, is crucial in discriminating colors, shapes, and movement that directly impact 

motor task performance via visuospatial feedback mechanisms for motor output [196], 

[197]. For example, studies involving unimanual motor task learning have shown evidence 

of BOLD signal decreases in functional activation within the occipital lobe [197]. 

Generally, studies addressing visuospatial task learning and performance have utilized the 

fMRI approach in a univariate manner to report occipital lobe activations. Functional 

activation measurements within this region can be incorporated in future studies to 

potentially increase the robustness of classification of surgical motor skill levels. Note that 

current studies using fNIRS for surgical skill assessment, including this work, only address 
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the motor skill performance aspect of surgical technical skills and do not address neural 

correlates of feedback mechanisms for visuospatial tasks. By expanding cortical 

measurements to the occipital lobe, it may be possible to further increase the robustness 

of subject classification based on surgical motor skill levels.   

5.2.2 High density probe measurements 

The biggest limitation of fNIRS approaches to brain imaging is the limited spatial 

resolution. fNIRS imaging studies, including this work, typically utilize sparse 

arrangements of source-detector channels to ensure sufficient depth penetration, while 

maintaining moderate spatial resolution [198]. However, fNIRS spatial resolution is still 

significantly lower than fMRI approaches and recent proposal of high density probe 

measurements have shown promising results to shorten this gap in spatial resolutions 

between fMRI and fNIRS [178], [199]. High density probe measurements utilize 

significantly larger amounts of sources and detectors and can range up to 1200 separate 

channels that span across the cerebrum during functional studies. This approach presents 

multiple advantages that include significantly larger field of views, spatial resolution on 

the order of 13mm, and high specificity to activation on the gyrus scale. While these 

advances are promising, several limitations to this approach as also evident, such as 

increased cross-talk between channel measurements posing a significant signal encoding 

challenge. Furthermore, the inclusion of over 90 source and detectors probes to achieve 

over 1200 measurement channels further complicates accurate probe placement and ease 

of use for clinical applications.  

5.2.3 Prediction of motor skill levels  

Another potential area of work that has not been addressed in literature is the usage 

of cortical measurements to predict motor skill learning curves for tailored learning 

programs. In this work, learning curves have been quantified using the CUSUM method 

to establish whether subjects have achieved a minimum proficiency level for surgical skill 

expertise. However, this approach does not account for the rate of motor skill learning or 

provide any information for accurate modeling of learning curve rates and motor skill 

plateaus for each subject. By utilizing regression methods such as partial least squares, or 
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non-linear regression it may be possible to utilize fNIRS metrics to predict plateaus in 

motor skill learning. This approach can also be expanded with the usage of multivariate 

convolutional neural networks (CNNs) to accurately predict motor skill learning curves 

using training datasets comprised of varying surgical motor skill learning curves with a 

wide variety of plateau ranges and learning rates. Ultimately, this approach may provide 

specific training programs for subjects that may significantly reduce required training 

times, and reduce surgical training program costs. 

5.2.4 Brain imaging for non-technical surgical skills 

Of course, bimanual motor skills are only a piece of the whole concept of surgical 

expertise. Non-technical skills such as cognitive decision making, communication, stress 

management, teamwork, and confidence all play a significant role is differentiating 

surgical expertise [200]. Non-technical skills are inherently different to objectively assess 

yet studies have cited that almost 43% of errors made in surgery are due to communication, 

cognitive, and diagnostic errors [200], [201]. While the significance of learning non-

technical skills are clearly apparent, current studies focus on rating based checklists or 

subjective metrics to assess non-technical skills. This presents a significant opportunity to 

utilize non-invasive brain imaging approaches to quantify non-technical surgical skills.  

Cortical regions such as the prefrontal cortex, bilateral anterior insula, and the anterior 

cingulate cortex are heavily implicated in the decision-making process during a given 

surgical procedure [202]. This work has already shown the utility of imaging the PFC 

specifically for surgical motor skill learning, and can be expanded for future studies 

involving efficiencies in decision making and communication. Furthermore, coupled 

imaging modalities, such as fMRI-fNIRS systems, would allow simultaneous 

measurements of the PFC, and deeper structures such as the hypothalamus, and basal 

ganglia to study their role in improvements in non-technical surgical skills over time. 
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